

November 17, 2021

W65C02SOC-40 Datasheet



WDC reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Information contained herein is provided gratuitously and without liability, to any user. Reasonable efforts have been made to verify the accuracy of the information but no guarantee whatsoever is given as to the accuracy or as to its applicability to particular uses. In every instance, it must be the responsibility of the user to determine the suitability of the products for each application. WDC products are not authorized for use as critical components in life support devices or systems. Nothing contained herein shall be construed as a recommendation to use any product in violation of existing patents or other rights of third parties. The sale of any WDC product is subject to all WDC Terms and Conditions of Sales and Sales Policies, copies of which are available upon request.

Copyright (C) 1978-2021 by The Western Design Center, Inc. All rights reserved, including the right of reproduction in whole or in part in any form.





W65C02SOC-40 Datasheet

#### Table of Contents

| 1      | INTRODUCTION                                           | .4  |
|--------|--------------------------------------------------------|-----|
| 1.1    | Key Features of the W65C02SOC-40 Microcontroller       | .4  |
| 1.2    | W65C02SOC-40 Pin Function List for 40 Pin PDIP/CDIP    | •4  |
| 1.3    | Functional Block Diagram                               | . 5 |
| 2      | MODULE DESCRIPTIONS                                    | ٠ś  |
| 2.1    | CLOCK MODULE                                           | ٠ś  |
| 2.2    | RESET MODULE                                           | ٠Ś  |
| 2.3    | W65C02RTL Programming Model                            | ٠Ś  |
| 2.4    | Priority Interrupt Controller Module Information       | ٠Ś  |
| 2.4.1  | Priority Encoded Interrupt Vector Module               | . Ś |
| 2.5    | Memory Map                                             | •7  |
| 2.6    | VIA Port Module                                        | •7  |
| 2.7    | GPIO Port Modules                                      | •7  |
| 2.7.1  | GPIO Module Register Descriptions - 5 Register Version | .8  |
| 2.8    | ACIA Modules                                           | •9  |
| 2.8.1  | ACIA Register Descriptions                             | ٠9  |
| 2.9    | I2C Interface Module                                   | 12  |
| 2.9.1  | I2C Status Register Definitions                        | 12  |
| 2.9.2  | I2C Command Register Definitions                       | 13  |
| 2.9.3  | I2C Receive Register Definitions                       | 13  |
| 2.9.4  | I2C Transmit Register Definitions                      | 14  |
| 2.9.5  | I2C Control Register                                   | 14  |
| 2.9.6  | I2C Clock Prescale Register Definitions                | 15  |
| 2.10   | SPI Module                                             | 16  |
| 2.10.1 | SPI Extension Register                                 | 16  |
| 2.10.2 | SPI Data Register                                      | 16  |
| 2.10.3 | SPI Status Register                                    | 17  |
| 2.10.4 | SPI Control Register                                   | 18  |
| 3      | W65C02SOC-40EDU Information                            | 19  |
| 3.1    | W65C02SOC-40EDU Board Diagram                          | 19  |
| 3.2    | Left IO Connector J3 on MyMENSCH <sup>IIII</sup>       | 20  |
| 3.3    | Right IO Connector J4 on MyMENSCH <sup>IM</sup>        | 21  |
| 4      | W65C02SOC-40TEB Information                            | 22  |
| 4.0    | W65C02SOC-401EB Board Diagram                          | 22  |
| 4.1    | UIP Socket on W65C02SUC-401EB                          | 23  |
| 4.2    | USB COde Port on W65C02SUC-401EB                       | 23  |
| 5      | FCC Compliance                                         | 24  |
| 6      | Ordering information                                   | 24  |



November 17, 2021

W65C02SOC-40 Datasheet

#### DOCUMENT REVISION HISTORY

| Version | Date       | Authors                 | Description                                               |
|---------|------------|-------------------------|-----------------------------------------------------------|
| 1.0     | 09/01/2021 | Bill Mensch, David Gray | Initial Document Entry                                    |
| 1.0     | 09/28/2021 | Bill Mensch, David Gray | Reduced to W65C02RTL, W65C22RTL, SRAM, Monitor ROM        |
| 1.0     | 10/01/2021 | Bill Mensch, David Gray | Removed the Qwiic, Grove add VIA, User and USB connectors |
| 1.0     | 10/02/2021 | Bill Mensch, David Gray | Updated with text changes and connector descriptions.     |
| 1.0     | 10/12/2021 | Bill Mensch             | Updated text                                              |
| 1.0     | 10/15/2021 | Bill Mensch, David Gray | Added I2C, SPI, UART, etc. Changed name to W65C02SOC-40   |
| 1.0     | 10/19/2021 | David Gray, Bill Mensch | Corrected signal pinout for XCLK and SCLK                 |
| 1.0     | 11/17/2021 | David Gray              | Added Board Diagrams for EDU and TEB                      |
|         |            |                         |                                                           |
|         |            |                         |                                                           |
|         |            |                         |                                                           |
|         |            |                         |                                                           |
|         |            |                         |                                                           |
|         |            |                         |                                                           |
|         |            |                         |                                                           |
|         |            |                         |                                                           |
|         |            |                         |                                                           |



November 17, 2021

W65C02SOC-40 Datasheet

# **1 INTRODUCTION**

The W65C02SOC-40 Microcontroller Datasheet is for The VLSI MPW SOC Design Class for use with the Muse Semiconductor MPW services with the TSMC 180nm process node.

This datasheet includes information for the W65C02SOC-40 System-on Chip (SOC), W65C02SOC-40M08SA Intel MAX10M08SA FPGA Microcontroller for emulation of the SOC ASIC and the W65C02SOC-40TEB Test and Evaluation Board.

MyMENSCH<sup>™</sup> Rev-C uses a W65C51RTL to drive the CH340 serial-to-USB code port interface for use with WDCTools for both Assembly and C language code development.

The microprocessor unit (MPU) is the W65C02RTL microprocessor. The WDC65xx microcontrollers have interfaces for connected Things for sensing, processing, communicating and actuating (SPCA) are described with the Verilog HDL for use with both FPGAs and ASIC design and manufacturing flow.

This product description assumes that the reader is familiar with the W65C02S 8-bit CPU family hardware and programming capabilities. Refer to documentation on the WDC65xx.com website, *Programming the 65816 Including the 6502, 65C02 and 65802* Manual,

#### 1.1 Key Features of the W65C02SOC-40 Microcontroller

- IO Operating Voltage 3.3V
- Core Operating Voltage 1.8V
- System Operation Speed Determined by the chosen Oscillator
- W65C02RTL MPU
- W65C22RTL VIA
- W65C51RTL ACIA (x2) XTLI @ 1.8432 MHz
- W65CGPIO ports (8 pins per port) (x4 ports)
- SPI Primary
- I2C Primary
- WDC 2K byte Monitor for boot loading and debugging code
- 16K bytes User code SRAM boot loaded from USB or copied from external SPI serial FLASH memory
- 16K bytes for for data SRAM
- JTAG available on MyMENSCH™

### **1.2 W65C02SOC-40 Pin Function List for 40 Pin PDIP/CDIP**

- 1x 3v3 VDD
- 1x 1v8 Core VDD
- 2x VSS
- 20x VIA\_A
- 4x ACIA\_A with Handshake (on GPIO)
- 4x ACIA\_B with Handshake (on GPIO)
- 2x l2C
- 4x SPI
- 2x SCLK (Serial UART CLK), XCLK (System CLK)



# **1.3 Functional Block Diagram**

The following block diagram is for the W65C02SOC-40.



# **2 MODULE DESCRIPTIONS**

Following are descriptions of the basic modules.

# 2.1 CLOCK MODULE

There is one main system clock (XCLK) aka PHI2. The Serial UART clock (SCLK) is for the UART baud rate.

# 2.2 RESET MODULE

There are no Reset Module Registers and therefore no definitions. This is a basic module to handle the reset logic for the system.

# 2.3 W65C02RTL Programming Model

Refer to the W65C02S Datasheet for the Microprocessor Programming Model, Status Register Coding and complete information. More information is found in *Programming the 65816: Including the 6502, 65C02 and 65802* Manual available through Amazon.

### 2.4 Priority Interrupt Controller Module Information

The Interrupt Control Module controls the priority and memory map for interrupts. Each interrupt is connected to the Interrupt Control Module for prioritizing.



W65C02SOC-40 Datasheet

Interrupt Enable Registers for the various interrupts are the interrupt enable by the various enable bits. Reading the various IER and IFR bits determines the interrupt that occurred. By prioritizing the interrupts one can determine which interrupt occurred in the associated interrupt handler routine. Notice that any of the 8 interrupts for a GPIO 8-bit port will cause a GPIO vectored interrupt to occur.

# 2.4.1 Priority Encoded Interrupt Vector Module

| Vector Address | Label      | Function                                             |
|----------------|------------|------------------------------------------------------|
| 0xFFFE,F       | IRQBRK     | BRK – Software Interrupt                             |
| 0xFFFC,D       | IRQRES     | RES – "REStart" Interrupt                            |
| 0xFFFA,B       | IRQNMI     | Non-Maskable Interrupt/Hardware Breakpoint (HBP)     |
| 0xFFF8,9       | IRQGPIO_HS | GPIO Interrupt for UART Handshaking (for all 8 pins) |
| 0xFFF6,7       | IRQVIA_A   | VIA Interrupt                                        |
| 0xFFF4,5       | IRQSPI     | SPI Interrupt                                        |
| 0xFFF2,3       | IRQI2C     | I2C Interrupt                                        |
| 0xFFF0,1       | Reserved   | Reserved                                             |



November 17, 2021

W65C02SOC-40 Datasheet

### 2.5 Memory Map

| Start  | End    | Size    | Description                       |
|--------|--------|---------|-----------------------------------|
| 0xF800 | OxFFFF | 2048 B  | 2048 Byte Monitor                 |
| 0x8000 | OxBFFF | 16384 B | 16K Byte Protected Bootloaded RAM |
| 0x7FA8 |        | 1 B     | Memory Protect                    |
| 0x7F40 | 0x7F45 | 6 B     | SPI                               |
| 0x7F30 | 0x7F35 | 6 B     | I2C                               |
| 0x7F24 | 0x7F27 | 4 B     | ACIA_B                            |
| 0x7F20 | 0x7F23 | 4 B     | ACIA_A                            |
| 0x7F10 | 0x7F1F | 16 B    | VIA_A                             |
| 0x7F00 | 0x7F04 | 5 B     | GPIO – UART Handshaking           |
| 0x0000 | 0x3FFF | 16384 B | 16K Byte SRAM                     |

### 2.6 VIA Port Module

The W65C02SOC-40 features one Versatile Interface Adapters (VIA) based on the W65C22S. See Memory Map for base addresses. See W65C22S Datasheet for full register descriptions.

### 2.7 GPIO Port Modules

One GPIO Port Module is included on this design. This 5 Register (8-bit) version supports edge sense interrupts and has a PIO Register (PIOx), Data Direction Register (DDRx), Interrupt Flag Register (IFRx), Interrupt Enable Register (IERx), and Edge Sense Register (ESRx). This GPIO is intended to be used as handshake logic for the 2 ACIA modules and Chip Select Outputs for SPI. See Memory Map for base addresses.





W65C02SOC-40 Datasheet

#### 2.7.1

# **GPIO Module Register Descriptions - 5 Register Version**

| Addres | ss = Base + 4 | GPIO_ES | SR: GPIO E   | : GPIO Edge Sense Register                        |                 |               |         | Reset V         | alue = 0x00 |
|--------|---------------|---------|--------------|---------------------------------------------------|-----------------|---------------|---------|-----------------|-------------|
| 7:0->  | ESR7          | ESR6    | ESR5         | ESR4                                              | ESR3            | B ES          | R2      | ESR1            | ESR0        |
| Bit    | Name          | Access  | Descripti    | ion                                               |                 |               |         |                 |             |
| 7 0    |               |         | 1 = Positive | Edge Sense f                                      | for PIO7-0      |               |         |                 |             |
| 7 – 0  | ESR[7.0]      | r///    | 0 = Negativ  | e Edge Sense                                      | for PIO7-0      |               |         |                 |             |
| Addres | ss = Base + 3 | GPIO_IE | R: GPIO In   | terrupt En                                        | able Regi       | ster          |         | Reset Val       | ue = 0x00   |
| 7:0->  | IER7          | IER6    | IER5         | IER5 IER4 IER3 IER2 IER1 IER0                     |                 |               |         |                 | IER0        |
| Bit    | Name          | Access  | Descripti    | Description                                       |                 |               |         |                 |             |
| 7 0    |               |         | 1 = Enable   | Interrupt on in                                   | puts for PIO7   | -0            |         |                 |             |
| 7 – 0  |               | r///    | 0 = Disable  | Interrupts on i                                   | inputs for PIC  | 07-0          |         |                 |             |
| Addres | ss = Base + 2 | GPIO_IF | R: GPIO In   | : GPIO Interrupt Flag Register Reset Value = 0x00 |                 |               |         |                 |             |
| 7:0->  | IFR7          | IFR6    | IFR5         | IFR4                                              | IFR3            | IFR2          |         | IFR1            | IFR0        |
| Bit    | Name          | Access  | Descripti    | Description                                       |                 |               |         |                 |             |
| 7 0    |               |         | 1 = Interrup | t Occurred on                                     | inputs for PIC  | 07-0          |         |                 |             |
| 7 – 0  |               | R/VV    | 0 = Interrup | ts did not occu                                   | ur on inputs fo | or PIO7-0     |         |                 |             |
| Addres | ss = Base + 1 | GPIO_D  | dr: gpio i   | Data Direct                                       | tion Regis      | ter           |         | Reset V         | alue = 0x00 |
| 7:0->  | DDR7          | DDR6    | DDR5         | DDR4                                              | DDR             | B DD          | R2      | DDR1            | DDR0        |
| Bit    | Name          | Access  | Descripti    | ion                                               |                 |               |         |                 |             |
| 7 - 0  |               |         | 1 = PIO data | a direction set                                   | to Output PI    | O7-0          |         |                 |             |
| 7 = 0  |               | N/ V V  | 0 = PIO data | a direction set                                   | to Input PIO    | 7-0           |         |                 |             |
| Addr   | ess = Base    | GPIO_DA | ATA: GPIO    | Data Regi                                         | ster            |               |         | Reset Valu      | e = 0x00    |
| 7:0->  | PIO7          | PIO6    | PIO5         | PIO4                                              | PIO3            | PIO2          |         | PIO1            | PIO0        |
| Bit    | Name          | Access  | Descrip      | tion                                              |                 |               |         |                 |             |
| 7 0    |               |         | 1 = PIO lin  | e is logic 1 va                                   | lue read and    | sets a 1 valu | ue on w | rite for PIO7-0 |             |
| 7 – 0  |               | r./ v v | 0 = PIO lin  | e is logic 0 va                                   | lue read and    | sets a 0 valu | ue on w | rite for PIO7-0 |             |



W65C02SOC-40 Datasheet

# 2.8 ACIA Modules

The SoC has two Asynchronous Communications Interface Adapter (ACIA) modules used to transfer information to and from various communications modules such as LoRa, GSM, Bluetooth, Wi-Fi radio modules and UART enabled devices. See the Memory Map for base addresses. The baud rates are derived from 1.8432MHz XTLI input.

# 2.8.1 ACIA Register Descriptions

| Address | = Base + 3 | ACIA_CTRI | .: ACIA Cont              | rol Register                  |                |              | Reset Va     | lue = 0x00 |  |  |
|---------|------------|-----------|---------------------------|-------------------------------|----------------|--------------|--------------|------------|--|--|
| 7:0->   | SBN        | WL1       | WL0                       | RSC                           | SBR3           | SBR2         | SBR1         | SBR0       |  |  |
| HWRES   | 0          | 0         | 0                         | 1                             | 0              | 0            | 0            | 0          |  |  |
| SWRES   | -          | -         | -                         | 1                             | -              | -            | -            | -          |  |  |
| Bit     | Name       | Access    | Description               |                               |                |              |              |            |  |  |
| 7       | SBN        | D AA/     | 1 = 2 Stop bits,          | 1 $\frac{1}{2}$ Stop bits for | WL = 5, 1 Stop | bit for WL = | 8 and parity |            |  |  |
| /       | JDN        | R/W       | 0 = 1 Stop bit            |                               |                |              |              |            |  |  |
| 6       | WI 1       | ₽۸۸/      | 11 = 5 bits               |                               |                |              |              |            |  |  |
| 0       | VV L I     | N/ VV     | 10 = 6 bits               |                               |                |              |              |            |  |  |
| Б       | WLO        | 5 WIO     | D AA/                     | 01 = 7 bits                   |                |              |              |            |  |  |
| 5       | WLU        | N/ W      | 00 = 8 bits               | 00 = 8 bits                   |                |              |              |            |  |  |
| 1       | RSC        | RSC       | ₽۸۸/                      | 1 = Baud rate                 |                |              |              |            |  |  |
| 4       | KOO        | 11/10     | 0 = RSC clock             | source                        |                |              |              |            |  |  |
| 3       | SBR3       | R/M       | 1110 = 9600, 1111 = 19200 |                               |                |              |              |            |  |  |
| 5       | OBIG       | 10/00     | 1100 = 4800, 1            | 101 = 7200                    |                |              |              |            |  |  |
| 2       | SBR2       | ₽۸۸/      | 1010 = 2400, 1011 = 3600  |                               |                |              |              |            |  |  |
| 2       | OBILE      | 11/10     | 1000 = 1200, 1            | 001 = 1800                    |                |              |              |            |  |  |
| 1       | SBR1       | R/M       | 0110 = 300, 01            | 11 = 600                      |                |              |              |            |  |  |
| I       | OBIN       | 1.7,7,7   | 0100 = 134.58,            | 0101 = 150                    |                |              |              |            |  |  |
|         | SBPO       | ₽۸۸/      | 0010 = 75, 001            | 0010 = 75, 0011 = 109.92      |                |              |              |            |  |  |
| 0       | SBRU       | 13/99     | 0000 = 115.2K             | , 0001 = 50                   |                |              |              |            |  |  |



November 17, 2021

W65C02SOC-40 Datasheet

| Address  | s = Base + 2       | ACIA_CMR | : ACIA Comr                                                     | nand Regis      | Reset Va         | lue = 0x00 |     |     |  |  |
|----------|--------------------|----------|-----------------------------------------------------------------|-----------------|------------------|------------|-----|-----|--|--|
| 7:0->    | PCM1               | PCM0     | PME                                                             | REM             | TIC1             | TIC0       | IRD | DTR |  |  |
| HWRES    | 0                  | 0        | 0                                                               | 0               | 0                | 0          | 0   | 0   |  |  |
| SWRES    | -                  | -        | -                                                               | - 0 0 0 0 0     |                  |            |     |     |  |  |
| Bit      | Name               | Access   | Description                                                     | ı               |                  |            |     |     |  |  |
| 7        |                    |          | 11 = Space pa                                                   | rity            |                  |            |     |     |  |  |
| 1        | FOWIT              | r./ v v  | 10 = Mark pari                                                  | ty              |                  |            |     |     |  |  |
| 6        | PCMO               |          | 01 = Odd parity                                                 | /               |                  |            |     |     |  |  |
| Ö        | PCIVIU             | R/W      | 00 = Even parity                                                |                 |                  |            |     |     |  |  |
| <b>_</b> | 1 = Parity enabled |          |                                                                 |                 |                  |            |     |     |  |  |
| Э        |                    | R/W      | 0 = Parity disabled                                             |                 |                  |            |     |     |  |  |
| 4        | DEM                | DAV      | 1 = Receiver Echo Mode not available                            |                 |                  |            |     |     |  |  |
| 4        | REIVI              | R/VV     | 0 = Receiver E                                                  | cho Mode not    | available        |            |     |     |  |  |
| 2        | TICA               |          | 11 = RTSB = low, Transmitter interrupt disabled, Transmit Break |                 |                  |            |     |     |  |  |
| 3        | ner                | R/VV     | 10 = RTSB = low, Transmitter interrupt disabled                 |                 |                  |            |     |     |  |  |
| 0        | TICO               |          | 01 = RTSB = lo                                                  | ow, Transmitte  | r interrupt ena  | bled       |     |     |  |  |
| 2        | TICU               | K/VV     | 00 = RTSB = h                                                   | igh, Transmitt  | er interrupt dis | abled      |     |     |  |  |
| 4        |                    |          | 1 = Receiver Ir                                                 | nterrupt Disabl | ed               |            |     |     |  |  |
| 1        | IKD                | R/W      | 0 = Receiver Ir                                                 | nterrupt Enable | ed               |            |     |     |  |  |
| 0        | DTD                |          | 1 = Data Termi                                                  | nal Ready       |                  |            |     |     |  |  |
| 0        | אוט                | K/VV     | 0 = Data Termi                                                  | inal Transmitte | er Not Ready     |            |     |     |  |  |



W65C02SOC-40 Datasheet

| Address | s = Base + 1 | ACIA_STR: | ACIA Sta         |                         | Reset Value = 0x10 |      |    |    |  |  |
|---------|--------------|-----------|------------------|-------------------------|--------------------|------|----|----|--|--|
| 7:0->   | IRQ          | DSRB      | DCDB             | TDRE                    | RDRF               | OVRN | FE | PE |  |  |
| HWRES   | 0            | 0         | 0                | 1                       | 0                  | 0    | 0  | 0  |  |  |
| SWRES   | -            | -         | -                | 1                       | -                  | -    | -  | -  |  |  |
| Bit     | Name         | Access    | Descript         | Description             |                    |      |    |    |  |  |
| 7       | IBO          | D/O       | 1 = Interrup     | ot has occurre          | d                  |      |    |    |  |  |
| /       | IKQ          | R/O       | 0 = No Inte      | rrupt                   |                    |      |    |    |  |  |
|         |              | D/O       | 1 = Not rea      | dy and not cle          | ear to send da     | ta   |    |    |  |  |
| 6       | DSKB         | R/O       | 0 = Ready        | and clear to s          | end data           |      |    |    |  |  |
|         | DCDP         | DODD      | D/O              | 1 = DCD N               | ot Detected        |      |    |    |  |  |
| Э       | DCDB         | R/U       | 0 = DCD Detected |                         |                    |      |    |    |  |  |
| 4       | TDBE         | E R/O     | 1 = Empty        |                         |                    |      |    |    |  |  |
| 4       | IDKE         |           | 0 = Not Empty    |                         |                    |      |    |    |  |  |
| 2       | PDPE         | 1 = Full  |                  |                         |                    |      |    |    |  |  |
| 3       | NDNF         | R/O       | 0 = Not Full     |                         |                    |      |    |    |  |  |
| 2       |              | D/O       | 1 = Overru       | n has occurre           | b                  |      |    |    |  |  |
| 2       | OVRN         | R/O       | 0 = No overrun   |                         |                    |      |    |    |  |  |
| 1       | FE           | D/O       | 1 = Framin       | g error detecte         | ed                 |      |    |    |  |  |
| I       | FE           | R/U       | 0 = No fran      | 0 = No framing error    |                    |      |    |    |  |  |
| 0       | DE           | P/O       | 1 = Parity e     | error detected          |                    |      |    |    |  |  |
| U       | FE           | K/U       | 0 = No pari      | ty error                |                    |      |    |    |  |  |
| Address | s = Base + 1 | W/O       | Program R        | Program Reset aka SWRES |                    |      |    |    |  |  |

| Addre | ss = Base | ACIA_DR: A | CIA Data  | Register                |              | Reset Value | = 0x00 |  |  |  |
|-------|-----------|------------|-----------|-------------------------|--------------|-------------|--------|--|--|--|
| 7:0-> | DR7       | DR6        | DR5       | DR5 DR4 DR3 DR2 DR1 DR0 |              |             |        |  |  |  |
| Bit   | Name      | Access     | Descrip   | Description             |              |             |        |  |  |  |
| 7 0   |           | DAA        | R = Read  | Receiver Data           | a Register   |             |        |  |  |  |
| 7-0   | UK[7-0]   | K/W        | W = Write | e Transmitter D         | ata Register |             |        |  |  |  |



November 17, 2021

W65C02SOC-40 Datasheet

# 2.9 I2C Interface Module

For the I2C register descriptions and I2C Operation, refer to the "I2C Design Specification".

# **2.9.1 I2C Status Register Definitions**

| Address | s = Base + 5 | SR: I2C Sta | tus Register                                                                                      |                   |                |         | Reset Va | lue = 0x00 |  |  |  |
|---------|--------------|-------------|---------------------------------------------------------------------------------------------------|-------------------|----------------|---------|----------|------------|--|--|--|
| 7:0->   | RxACK        | WCOL        | BUSY                                                                                              | RESERVED          | WFFULL         | WFEMPTY | RFFULL   | RFEMPTY    |  |  |  |
| Bit     | Name         | Access      | Description                                                                                       | Description       |                |         |          |            |  |  |  |
| 7       | BYACK        | P/O         | 1 = No acknowl                                                                                    | edge received     |                |         |          |            |  |  |  |
| '       | RXAUN        | R/O         | 0 = Acknowledge received                                                                          |                   |                |         |          |            |  |  |  |
| 6       |              |             | 1 = After start 12                                                                                | 2C bus busy signa | I detected     |         |          |            |  |  |  |
| Ø       | 6031         | r./ vv      | 0 = After stop 12                                                                                 | 2C bus busy signa | l detected     |         |          |            |  |  |  |
| E       |              |             | 1 = Never                                                                                         |                   |                |         |          |            |  |  |  |
| 5       | KOKVD        | R/O         | 0 = Always                                                                                        |                   |                |         |          |            |  |  |  |
| 4       |              |             | 1 = Never                                                                                         |                   |                |         |          |            |  |  |  |
| 4       | NONVD        | NO NO       | 0 = Always                                                                                        |                   |                |         |          |            |  |  |  |
| 2       |              | P/O         | 1 = Never                                                                                         |                   |                |         |          |            |  |  |  |
| 3       | NORVD        | NO NO       | 0 = Always                                                                                        |                   |                |         |          |            |  |  |  |
| 2       |              | P/O         | 1 = Never                                                                                         |                   |                |         |          |            |  |  |  |
| 2       | NONVD        | N/O         | 0 = Always                                                                                        |                   |                |         |          |            |  |  |  |
| 4       | тір          | R/O         | 1 = Transfer in                                                                                   | progress when tra | nsferring data |         |          |            |  |  |  |
| I       | IIP          | R/O         | 0 = When transfer complete                                                                        |                   |                |         |          |            |  |  |  |
| 0       | IE           | <b>D</b> /0 | 1 = Interrupt is set when one byte is transferred, processor interrupt request if IEN bit is set. |                   |                |         |          |            |  |  |  |
| U       | IF           | R/U         | 0 = No interrupt                                                                                  | 0 = No interrupt  |                |         |          |            |  |  |  |



November 17, 2021

W65C02SOC-40 Datasheet

# 2.9.2 I2C Command Register Definitions

| Address | s = Base + 4 | CR: I2C Co   | mmand Regis      | Reset Value = 0x00   |        |       |       |      |  |
|---------|--------------|--------------|------------------|----------------------|--------|-------|-------|------|--|
| 7:0->   | STA          | STO          | RD               | WR                   | ACK    | RSVRD | RSVRD | IACK |  |
| Bit     | Name         | Access       | Description      | l                    |        |       |       |      |  |
| 7       | ST V         | D/M          | 1 = Generate st  | tart condition       |        |       |       |      |  |
| '       | 314          | r./ <b>v</b> | 0 = Do not gene  | erate start conditio | n      |       |       |      |  |
| 6       | STO          | D/M          | 1 = Generate st  | top condition        |        |       |       |      |  |
| 0       | 310          | r/ w         | 0 = Do not gene  | erate stop conditio  | n      |       |       |      |  |
| E       | חם           | 5 RD         | D/M              | 1 = Read from s      | slaver |       |       |      |  |
| 5       | שא           | r/w          | 0 = Do not read  | from slave           |        |       |       |      |  |
| 4       | WP           | D/M          | 1 = Write slave  |                      |        |       |       |      |  |
| 4       | VVIN         | r./ <b>v</b> | 0 = Do not write | e slave              |        |       |       |      |  |
| 2       | ACK          | D/M          | 1 = NACK         |                      |        |       |       |      |  |
| 5       | ACK          | r./ ¥¥       | 0 = ACK          |                      |        |       |       |      |  |
| 2       | Beved        | D/M          | 1 = Never        |                      |        |       |       |      |  |
| 2       | NOVND        | r./ <b>v</b> | 0 = Always       |                      |        |       |       |      |  |
| 1       | PSVPD        | D/W          | 1 = Never        |                      |        |       |       |      |  |
|         | NOVIND       | 17/44        | 0 = Always       |                      |        |       |       |      |  |
| 0       |              | D/M          | 1 = Clear a pen  | iding interrupt      |        |       |       |      |  |
| U       | IAUN         | F\$/ ¥¥      | 0 = Don't clear  | a pending interrup   | t      |       |       |      |  |

# 2.9.3 I2C Receive Register Definitions

Last byte received via I2C.

| Address | s = Base + 3 | RXR: I2C | RXR: I2C Receive Register       |      |  |  |  | alue = 0x00 |  |
|---------|--------------|----------|---------------------------------|------|--|--|--|-------------|--|
| 7:0->   | RXR7         | RXR6     | RXR5 RXR4 RXR3 RXR2 RXR1 RXR0   |      |  |  |  |             |  |
| Bit     | Name         | Access   | Description                     |      |  |  |  |             |  |
| 7 - 0   | RXR[7-0]     | R/O      | R = Read Receiver Data Register |      |  |  |  |             |  |
|         |              |          | W = no opera                    | tion |  |  |  |             |  |
|         |              |          |                                 |      |  |  |  |             |  |





W65C02SOC-40 Datasheet

# **2.9.4 I2C Transmit Register Definitions**

7:1 RW Next byte to transmit via I2C 0 RW In case of a data transfer this bit represent the data's LSB. In case of a slave address transfer this bit represents the RW bit. '1' for reading from slave '0' for writing to slave

| Address | s = Base + 2 | TXR: I2C Tra | ansmit Ro                       | ue = 0x00               |               |  |  |  |  |
|---------|--------------|--------------|---------------------------------|-------------------------|---------------|--|--|--|--|
| 7:0->   | DR7          | DR6          | DR5                             | DR5 DR4 DR3 DR2 DR1 DR0 |               |  |  |  |  |
| Bit     | Name         | Access       | Descrip                         | otion                   |               |  |  |  |  |
| 7 0     |              | D/M          | R = Read Receiver Data Register |                         |               |  |  |  |  |
| 7-0     |              | R/W          | W = Write                       | Transmitter D           | Data Register |  |  |  |  |

#### 2.9.5 I2C Control Register

The core responds to new commands only when the 'EN' bit is set. Pending commands are finished. Clear the 'EN' bit only when no transfer is in progress, i.e. after a STOP command, or when the command register has the STO bit set. When halted during a transfer, the core can hang the I2C bus.

| Address = Base +1 CTF |       |        | Control Reg      | ister           | Reset Value = 0x10 |       |       |       |
|-----------------------|-------|--------|------------------|-----------------|--------------------|-------|-------|-------|
| 7:0->                 | EN    | IEN    | RSRVD            | RSRVD           | RSRVD              | RSRVD | RSRVD | RSRVD |
| Bit                   | Name  | Access | Description      |                 |                    |       |       |       |
| 7                     | EN    | D/M    | 1 = I2C Core en  | abled           |                    |       |       |       |
| '                     | EN    | K/ VV  | 0 = I2C Core dis | sabled          |                    |       |       |       |
| 6                     |       | D/M/   | 1 = I2C Core int | errupt enabled  |                    |       |       |       |
| 0                     |       | FC/ VV | 0 = I2C Core int | errupt disabled |                    |       |       |       |
| 5                     | PSPVD | D/M    | 1 = Never        |                 |                    |       |       |       |
| 5                     | KSKVD | 1.7.44 | 0 = Always       |                 |                    |       |       |       |
| А                     | RSRVD | R/W    | 1 = Never        |                 |                    |       |       |       |
| -                     | KSKVD | 10/00  | 0 = Always       |                 |                    |       |       |       |
| 3                     | RSRVD | R/W    | 1 = Never        |                 |                    |       |       |       |
| 3                     |       |        | 0 = Always       |                 |                    |       |       |       |
| 2                     | RSRVD | R/W    | 1 = Never        |                 |                    |       |       |       |
|                       | KOKYB | 1011   | 0 = Always       |                 |                    |       |       |       |
| 1                     | RSRVD | R/W    | 1 = Never        |                 |                    |       |       |       |
|                       | KOKVD | 10,00  | 0 = Always       |                 |                    |       |       |       |
| 0                     | RSRVD | R/W    | 1 = Never        |                 |                    |       |       |       |
| Ŭ                     | NORVD | 17/44  | 0 = Always       |                 |                    |       |       |       |



November 17, 2021

W65C02SOC-40 Datasheet

# 2.9.6 I2C Clock Prescale Register Definitions

For the I2C register descriptions, refer to the "I2C Design Specification".

This register is used to prescale the SCL clock line. Due to the structure of the I2C interface, the core uses a 4\*SCL clock internally. The prescale register must be programmed to this 4\*SCL bitrate. Change the value of the prescale register only when the 'EN' bit is cleared.

Example: CLK\_I = 32MHz, desired SCL = 100 KHz Prescale = 32MHZ = 80 (dec) = 50 (hex) 4 \* 100 KHz Reset value: 0xFFFF

| Addre | ss = Base | PRER: I2C C | Clock Prescale Register Reset Value = 0xFF |                  |            |  |  |       | 2C Clock Prescale Register |  |  |  |
|-------|-----------|-------------|--------------------------------------------|------------------|------------|--|--|-------|----------------------------|--|--|--|
| 7:0-> | PRER7     | PRER6       | PRER5 PRER4 PRER3 PRER2 PRER1 PRER0        |                  |            |  |  | PRER0 |                            |  |  |  |
| Bit   | Name      | Access      | Description                                |                  |            |  |  |       |                            |  |  |  |
| 7 0   |           | DAM         | R = Read Receiver Data Register            |                  |            |  |  |       |                            |  |  |  |
| 7-0   | PRER[7-0] | R/W         | W = Write 1                                | Fransmitter Data | a Register |  |  |       |                            |  |  |  |



November 17, 2021

W65C02SOC-40 Datasheet

### 2.10 SPI Module

The SPI module described in the standard SPI Specification found in this link.

### 2.10.1 SPI Extension Register

| Addres | s = Base + 3 | SPER: S                                                                   | SPI Extension Register Res |                                                                          |                   |   | Reset Valu | Reset Value = 0x00 |  |  |
|--------|--------------|---------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------|-------------------|---|------------|--------------------|--|--|
| 7:0->  | ICNT1        | ICNT0                                                                     | RESERVED                   | RESERVED RESERVED RESERVED ESPR1 ESPR0                                   |                   |   |            |                    |  |  |
| Bit    | Name         | Acces<br>s                                                                | Description                |                                                                          |                   |   |            |                    |  |  |
| 7      | ICNT1        | R/W                                                                       | 11 = SPIF is set af        | iter every four cor                                                      | npleted transfers |   |            |                    |  |  |
| 1      |              | 1.7.44                                                                    | 10 = SPIF is set aft       | ter every three co                                                       | mpleted transfers | ; |            |                    |  |  |
| G      |              | DAM                                                                       | 01 = SPIF is set aft       | ter every two com                                                        | pleted transfers  |   |            |                    |  |  |
| 0      |              | r/ w                                                                      | 00 = SPIF is set af        | ter every complete                                                       | ed transfer       |   |            |                    |  |  |
| F      | DESEDVED     | D/M/                                                                      | 1 = Never                  |                                                                          |                   |   |            |                    |  |  |
| 5      | RESERVED     | r/ w                                                                      | 0 = Always                 |                                                                          |                   |   |            |                    |  |  |
| Α      |              | D/M                                                                       | 1 = Never                  |                                                                          |                   |   |            |                    |  |  |
| t      | RESERVED     | N/ W                                                                      | 0 = Always                 |                                                                          |                   |   |            |                    |  |  |
| 2      |              |                                                                           | 1 = Never                  |                                                                          |                   |   |            |                    |  |  |
| 2      | RESERVED     | r/ W                                                                      | 0 = Always                 |                                                                          |                   |   |            |                    |  |  |
| 2      |              | D/M                                                                       | 1 = Never                  |                                                                          |                   |   |            |                    |  |  |
| 2      | RESERVED     | N/ W                                                                      | 0 = Always                 |                                                                          |                   |   |            |                    |  |  |
| 1      | ESDD1        | D/M                                                                       | 11 = Reserved, do          | not use                                                                  |                   |   |            |                    |  |  |
| I      | LOFKI        | 10 = Add these two bits to the SPI Clock Rate 0=512, 01=1024, 02=2048, 03 |                            |                                                                          |                   |   |            |                    |  |  |
| 0      | ESDDO        | DAM                                                                       | 01 = Add these t           | 01 = Add these two bits to the SPI Clock Rate 0=8, 01=64, 02=128, 03=256 |                   |   |            |                    |  |  |
| U      | LOPKU        | r./ W                                                                     | 00 = Add these tw          | 00 = Add these two bits to the SPI Clock Rate 00=2, 01=4, 02=16, 03=32   |                   |   |            |                    |  |  |

#### 2.10.2 SPI Data Register

| Address | s = Base + 2 | SPDR: SPI D | oata Regi                                             | ster                                |  | Not Initialized on Reset |  |  |  |
|---------|--------------|-------------|-------------------------------------------------------|-------------------------------------|--|--------------------------|--|--|--|
| 7:0->   | SPDR7        | SPDR6       | SPDR5                                                 | SPDR5 SPDR4 SPDR3 SPDR2 SPDR1 SPDR0 |  |                          |  |  |  |
| Bit     | Name         | Access      | Description                                           |                                     |  |                          |  |  |  |
| 7 0     | 600017 01    | D/M         | R = Read SPI Data buffer<br>W = Write SPI Data buffer |                                     |  |                          |  |  |  |
| 7-0     | SPDK[1-0]    | r./ ¥¥      |                                                       |                                     |  |                          |  |  |  |



November 17, 2021

W65C02SOC-40 Datasheet

# 2.10.3 SPI Status Register

| Address | s = Base + 1           | SPSR: SPI | SPSR: SPI Status Register Re                    |                                                                 |                |                  |              | lue = 0x05 |  |  |
|---------|------------------------|-----------|-------------------------------------------------|-----------------------------------------------------------------|----------------|------------------|--------------|------------|--|--|
| 7:0->   | SPIF                   | WCOL      | RESERVED RESERVED WFFULL WFEMPTY RFFULL RFEMPTY |                                                                 |                |                  |              | RFEMPTY    |  |  |
| Bit     | Name                   | Access    | Description                                     |                                                                 |                |                  |              |            |  |  |
| 7       | SDIE                   | D/M       | 1 = SPI Interrup                                | 1 = SPI Interrupt Flag is set on completion of a transfer block |                |                  |              |            |  |  |
| '       | 3515                   | r./ ¥¥    | 0 = SPI not inte                                | rrupting                                                        |                |                  |              |            |  |  |
| 6       | WCOL                   | D/M       | 1 = SPI Core wi                                 | rite collision when                                             | SPI data regis | ter when Write I | FIFO is full |            |  |  |
| 0       | WCOL                   | r/w       | 0 = SPI Core di                                 | sabled                                                          |                |                  |              |            |  |  |
| 5       | DESEDVED               | R/O       | 1 = Never                                       |                                                                 |                |                  |              |            |  |  |
| 5       | RESERVED               | R/O       | 0 = Always                                      |                                                                 |                |                  |              |            |  |  |
| 4       | DESEDVED               | P/O       | 1 = Never                                       |                                                                 |                |                  |              |            |  |  |
| 4       | RESERVED               | R/O       | 0 = Always                                      |                                                                 |                |                  |              |            |  |  |
| 2       | WEELLI                 | P/O       | 1 = Write FIFO full                             |                                                                 |                |                  |              |            |  |  |
| 3       | WFFULL                 | RIO       | 0 = Write FIFO not full                         |                                                                 |                |                  |              |            |  |  |
| 2       | WEENDTY                | R/O       | 1 = Write FIFO empty                            |                                                                 |                |                  |              |            |  |  |
| 2       |                        | R/U       | 0 = Write FIFO not empty                        |                                                                 |                |                  |              |            |  |  |
| 4       |                        | R/O       | 1 = Read FIFO                                   | full                                                            |                |                  |              |            |  |  |
| I       | 0 = Read FIFO not full |           |                                                 |                                                                 |                |                  |              |            |  |  |
| 0       | DEEMDTY                | B/O       | 1 = Read FIFO empty                             |                                                                 |                |                  |              |            |  |  |
| U       |                        | к/О       | 0 = Read FIFO not empty                         |                                                                 |                |                  |              |            |  |  |



November 17, 2021

W65C02SOC-40 Datasheet

# 2.10.4 SPI Control Register

| Addre | ss = Base  | SPCR: SPI                                                      | Control Regis                                                                  | ster               |                  |                | Reset Va       | lue = 0x10 |  |
|-------|------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------|------------------|----------------|----------------|------------|--|
| 7:0-> | SPIE       | SPE                                                            | RESERVED MSTR CPOL CPHA SPR1 SPR0                                              |                    |                  |                |                | SPR0       |  |
| Bit   | Name       | Access                                                         | Description                                                                    |                    |                  |                |                |            |  |
| 7     | SDIE       |                                                                | 1 = SPI Interrup                                                               | t Enabled          |                  |                |                |            |  |
| 1     | SFIL       | R/W                                                            | 0 = SPI Interrup                                                               | t Disabled         |                  |                |                |            |  |
| 6     | <b>SDE</b> |                                                                | 1 = SPI Core er                                                                | nabled             |                  |                |                |            |  |
| 0     | SPE        | R/W                                                            | 0 = SPI Core dis                                                               | sabled             |                  |                |                |            |  |
| 5     | DESEDVED   | D \\\/                                                         |                                                                                |                    |                  |                |                |            |  |
| 5     | RESERVED   |                                                                |                                                                                |                    |                  |                |                |            |  |
| 1     | МСТР       |                                                                | 1 = Master                                                                     |                    |                  |                |                |            |  |
| Ŧ     | WISTR      | R/W                                                            | 0 = Slave                                                                      |                    |                  |                |                |            |  |
| 2     | CPOL       |                                                                | 1 = Negative Clock Polarity                                                    |                    |                  |                |                |            |  |
| 3     | CFUL       | r/w                                                            | 0 = Positive Clo                                                               | ck Polarity        |                  |                |                |            |  |
| 2     | СВПУ       |                                                                | 1 = Clock Phase                                                                | e Not Shifted      |                  |                |                |            |  |
| 2     | CFRA       | r/w                                                            | 0 = Clock Phase                                                                | e Shifted          |                  |                |                |            |  |
| 4     | SDD1       |                                                                | These values a                                                                 | re used with the E | SPR bits to de   | termine the e  | extended clock | rate.      |  |
| I     | SPRI       | Refer to the SPI Datasheet for detailed selection information. |                                                                                |                    |                  |                |                |            |  |
| 0     | 6DD0       | DAA                                                            | These values are used with the ESPR bits to determine the extended clock rate. |                    |                  |                |                |            |  |
| U     | 3PKU       | K/VV                                                           | Refer to the SP                                                                | I Datasheet for de | tailed selectior | n information. |                |            |  |



November 17, 2021

W65C02SOC-40 Datasheet

### **3 W65C02SOC-40EDU Information**

# 3.1 W65C02SOC-40EDU Board Diagram



3.50" x 3.00" PCB



W65C02SOC-40 Datasheet

# 3.2 Left IO Connector J3 on MyMENSCH<sup>TM</sup>

The J3 left connector has 46 IO, 2x 3v3 power and 2x VSS pins. Ball assignments labeled NA are Non-Assigned pins.

|     | J3 – L      | eft Expan    | sion Co | onnector    |              |
|-----|-------------|--------------|---------|-------------|--------------|
| Pin | Signal Name | FPGA<br>Ball | Pin     | Signal Name | FPGA<br>Ball |
| 1   | VSS         | -            | 2       | VDD         | -            |
| 3   | I2C_SCL     | L4           | 4       | NA          | L3           |
| 5   | I2C_SDA     | K6           | 6       | NA          | K5           |
| 7   | NA          | H4           | 8       | NA          | N2           |
| 9   | VIA_A_CB2   | M4           | 10      | NA          | N3           |
| 11  | VIA_A_CB1   | M5           | 12      | NA          | N4           |
| 13  | VIA_A_PB7   | L5           | 14      | NA          | N5           |
| 15  | VIA_A_PB6   | N7           | 16      | NA          | N6           |
| 17  | VIA_A_PB5   | N8           | 18      | NA          | M7           |
| 19  | VIA_A_PB4   | M9           | 20      | NA          | M8           |
| 21  | VIA_A_PB3   | M10          | 22      | NA          | N9           |
| 23  | VIA_A_PB2   | M11          | 24      | NA          | N10          |
| 25  | VIA_A_PB1   | N12          | 26      | NA          | N11          |
| 27  | VIA_A_PB0   | M13          | 28      | NA          | M12          |
| 29  | VIA_A_PA7   | L13          | 30      | NA          | L12          |
| 31  | VIA_A_PA6   | K13          | 32      | NA          | K12          |
| 33  | VIA_A_PA5   | K8           | 34      | NA          | J8           |
| 35  | VIA_A_PA4   | J9           | 36      | NA          | L10          |
| 37  | VIA_A_PA3   | K10          | 38      | NA          | L11          |
| 39  | VIA_A_PA2   | K11          | 40      | NA          | J10          |
| 41  | VIA_A_PA1   | H9           | 42      | NA          | H10          |
| 43  | VIA_A_PA0   | J12          | 44      | NA          | J13          |
| 45  | VIA_A_CA1   | H13          | 46      | NA          | G12          |
| 47  | VIA_A_CA2   | G13          | 48      | NA          | F12          |
| 49  | VDD         | -            | 50      | VSS         | -            |





W65C02SOC-40 Datasheet

### 3.3 Right IO Connector J4 on MyMENSCH<sup>TM</sup>

The J4 right connector has 46 IO, 2x 3v3 power and 2x VSS pins. Ball assignments labeled NA are Non-Assigned pins. The ADC inputs are not used for this build and should not be connected to anything.

|     | J4 – .      | Right Exp    | pansion Co | onnector    |              |
|-----|-------------|--------------|------------|-------------|--------------|
| Pin | Signal Name | FPGA<br>Ball | Pin        | Signal Name | FPGA<br>Ball |
| 1   | VDD         | -            | 2          | VSS         | -            |
| 3   | NA          | H3           | 4          | AGND        | (G2)         |
| 5   | NA          | H1           | 6          | ADC_IN0     | (F5)         |
| 7   | NA          | H2           | 8          | 3v3REF      | (F6)         |
| 9   | DNU/ADC_IN5 | F1           | 10         | 5vBAT       | (G1)         |
| 11  | DNU/ADC_IN6 | E1           | 12         | NA          | (E5)         |
| 13  | DNU/ADC_IN7 | C1           | 14         | DNU/ADC_IN1 | D1           |
| 15  | DNU/ADC_IN8 | B1           | 16         | DNU/ADC_IN2 | C2           |
| 17  | NA          | B2           | 18         | DNU/ADC_IN3 | E3           |
| 19  | NA          | A2           | 20         | DNU/ADC_IN4 | E4           |
| 21  | NA          | B3           | 22         | XCLK        | E6           |
| 23  | NA          | B4           | 24         | SCLK        | A3           |
| 25  | NA          | B5           | 26         | SPI_CS0     | A4           |
| 27  | NA          | B6           | 28         | SPI_SDI     | A5           |
| 29  | NA          | B7           | 30         | SPI_SDO     | A6           |
| 31  | NA          | A7           | 32         | SPI_SCLK    | D9           |
| 33  | NA          | A8           | 34         | NA          | E8           |
| 35  | NA          | C9           | 36         | NA          | F8           |
| 37  | NA          | C10          | 38         | NA          | A9           |
| 39  | NA          | B10          | 40         | NA          | A10          |
| 41  | NA          | B11          | 42         | TXD_B       | A11          |
| 43  | NA          | B12          | 44         | RXD_B       | A12          |
| 45  | NA          | B13          | 46         | RTSB_B_E6   | C11          |
| 47  | NA          | C13          | 48         | CTSB_B_E2   | C12          |
| 49  | VSS         | -            | 50         | VDD         | -            |



November 17, 2021

W65C02SOC-40 Datasheet

### 4 W65C02SOC-40TEB Information

### 4.0 W65C02SOC-40TEB Board Diagram



3.50" x 3.00" PCB





W65C02SOC-40 Datasheet

DIP Socket on W65C02SOC-40TEB

|     | U1 - W65C02SOC | -40TEB | DIP Socket  |
|-----|----------------|--------|-------------|
| Pin | Signal Name    | Pin    | Signal Name |
| 1   | VSS            | 40     | VSS         |
| 2   | PA0            | 39     | CA1         |
| 3   | PA1            | 38     | CA2         |
| 4   | PA2            | 37     | SPI_SCLK    |
| 5   | PA3            | 36     | SPI_SDI     |
| 6   | PA4            | 35     | SPI_SDO     |
| 7   | PA5            | 34     | SPI_CS0     |
| 8   | PA6            | 33     | XCLK        |
| 9   | PA7            | 32     | SCLK        |
| 10  | PB0            | 31     | TXD_B       |
| 11  | PB1            | 30     | RXD_B       |
| 12  | PB2            | 29     | RTSB_B_E6   |
| 13  | PB3            | 28     | CTSB_B_E2   |
| 14  | PB4            | 27     | TXD_A       |
| 15  | PB5            | 26     | RXD_A       |
| 16  | PB6            | 25     | RTSB_A_E7   |
| 17  | PB7            | 24     | CTSB_A_E3   |
| 18  | CB1            | 23     | I2C_SCL     |
| 19  | CB2            | 22     | I2C_SDA     |
| 20  | 3V3            | 21     | 1V8         |

### 4.1 USB Code Port on W65C02SOC-40TEB

The Micro USB connector is dual purpose. It is both the power connector that powers the board and the USB code port. The CH340 chip that interfaces to the connector has been preprogrammed so that when the board is power from a USB power on a computer, the chip will request 500mA of current from the host machine. The board can also be powered by any USB port that supplies 5V DC. Note that the board has a 3v3 and 1v8 voltage regulators.

In addition to the power, the USB port serves as an interface to WDC's tool suite for debugging and loading programs into the onboard SRAM.



W65C02SOC-40 Datasheet

# **5** FCC Compliance

The Western Design Center, Inc. (WDC) provides the enclosed product under the following conditions: This board is intended for use for Education, Engineering Development or Evaluation Purposes ONLY and is not considered by WDC to be a finished consumer product. This board should be handled with caution using good electronics handling practices. This board is compliant per RoHS/Green directives. It does not fall within the scope of directives such as FCC, CE, and UL. It generates uses and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules.

# 6 Ordering Information

The W65C02SOC-40EDU and W65C02SOC-40TEB are available from WDC as part of the W65C02SOC-40 VLSI SOC Design Course.