



WDC reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Information contained herein is provided gratuitously and without liability, to any user. Reasonable efforts have been made to verify the accuracy of the information but no guarantee whatsoever is given as to the accuracy or as to its applicability to particular uses. In every instance, it must be the responsibility of the user to determine the suitability of the products for each application. WDC products are not authorized for use as critical components in life support devices or systems. Nothing contained herein shall be construed as a recommendation to use any product in violation of existing patents or other rights of third parties. The sale of any WDC product is subject to all WDC Terms and Conditions of Sales and Sales Policies, copies of which are available upon request.

Copyright (C) 1981-2009 by The Western Design Center, Inc. All rights reserved, including the right of reproduction in whole or in part in any form.







| DOCUMENT REVISION HISTORY                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction4                                                                                                                                                                                                                                             |
| Features4                                                                                                                                                                                                                                                 |
| Board Jumper Configuration                                                                                                                                                                                                                                |
| JUMPER DESCRIPTIONS7                                                                                                                                                                                                                                      |
| Peripheral Interfaces                                                                                                                                                                                                                                     |
| Clock Sources                                                                                                                                                                                                                                             |
| Serial ATA (SATA) Interface                                                                                                                                                                                                                               |
| GPIO Expansion Connector                                                                                                                                                                                                                                  |
| Santa Cruz Expansion Connector9                                                                                                                                                                                                                           |
| Mesa Expansion Connector10                                                                                                                                                                                                                                |
| User Interface Signals11                                                                                                                                                                                                                                  |
| Dual 7-Segment Display                                                                                                                                                                                                                                    |
| User LEDs                                                                                                                                                                                                                                                 |
| Rotary Switch13                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                           |
| LCD Connector                                                                                                                                                                                                                                             |
| LCD Connector                                                                                                                                                                                                                                             |
| LCD Connector                                                                                                                                                                                                                                             |
| LCD Connector                                                                                                                                                                                                                                             |
| LCD Connector       13         Pushbuttons       14         Components       15         Appendix A. Schematics       16         Page 1/6       16                                                                                                         |
| LCD Connector       13         Pushbuttons       14         Components       15         Appendix A. Schematics       16         Page 1/6       16         Page 2/6       17                                                                               |
| LCD Connector       13         Pushbuttons       14         Components       15         Appendix A. Schematics       16         Page 1/6       16         Page 2/6       17         Page 3/6       18                                                     |
| LCD Connector       13         Pushbuttons       14         Components       15         Appendix A. Schematics       16         Page 1/6       16         Page 2/6       17         Page 3/6       18         Page 4/6       19                           |
| LCD Connector       13         Pushbuttons       14         Components       15         Appendix A. Schematics       16         Page 1/6       16         Page 2/6       17         Page 3/6       18         Page 4/6       19         Page 5/6       20 |



Terbi-ECP2Mulator User Guide

## **DOCUMENT REVISION HISTORY**

| Version | Date      | Author      | Description                                             |
|---------|-----------|-------------|---------------------------------------------------------|
| 1.0     | 12-02-09  | David Gray  | Initial Document Release                                |
| 1.1     | 14-Dec-09 | Cory Walton | Added Appendix B – Terbi Demo Code details and examples |
| 1.2     | 17-Dec-09 | David Gray  | Revised 7 Segment display FPGA mapping                  |
|         |           |             |                                                         |
|         |           |             |                                                         |
|         |           |             |                                                         |
|         |           |             |                                                         |
|         |           |             |                                                         |
|         |           |             |                                                         |
|         |           |             |                                                         |

The Western Design Center, Inc. 🛛 🗨 🗖



## Introduction

This document describes the features and functionality of the WDC Terbi-ECP2Mulator Board. This board is designed as a hardware emulation platform for design and development with WDC's 65xx Microprocessor Technology.

## Features

- Lattice ECP2M-50 FPGA with 48 kLUTs, 4147 kbit of Embedded Block RAM, 22 sysDSP<sup>™</sup> blocks, 88 18x18 multipliers,10 PLLs, and 270 user I/O pins
- Lattice MachXO<sup>™</sup> with 640 LUTs and 6.1 Kbit of RAM
- USB 2.0 connector and integrated ispDOWNLOAD® cable for JTAG programming the FPGA
- Flywire connector for programming using an ispDOWNLOAD cable (available separately)
- USB 2.0 compatible host connectors for interfacing with WDC's ProSDK Development Tools
- SATA interface with two LVDS signal pairs for high-speed data transfer
- Altera Santa Cruz compliant connectors (2 x 40) providing 46 lines of I/O Expansion
- 100-pin "MESA" connector compliant with T&MT USB PHY Standards
- 28-pin expansion header for I/O. Compatible with WDC's Parallel IO Board
- LCD connector for character displays, with contrast potentiometer
- 38-pin MICTOR connector for high speed Logic Analyzer connection
- 25 MHz oscillator with clock distribution buffer
- 4-pin DIP half socket for user selected oscillator
- One HEX Rotary Switch
- Dual Character 7-segment Display
- 8 LEDs
- 8 Test Points
- 4 Pushbutton switches for debug and user input
- Green LED to indicate the proper operation of the 3.3V and 2.5 V power supplies
- Blue LED which shows the configuration status ("DONE")
- Red LED to signal that the FPGA can be configured ("INIT")
- Yellow LED indicating the FPGA PROGRAM# I/O is asserted ("PROGRAM#")
- Program key to initiate the configuration sequence of the FPGA from SPI Flash memory
- Reset key
- 5V power supply
- Switching regulator for the generation of the 3.3V I/O voltage and the 1.2Vcore voltage
- Robust power configuration with jumper selections to power board with either of the two USB ports or the DC input jack



#### Figure 1 – Terbi-ECP2Mulator





# **Board Jumper Configuration**

#### Figure 2 - Terbi Jumper Layout



The Western Design Center, Inc. 🛛 🧲



Terbi-ECP2Mulator User Guide

### **JUMPER DESCRIPTIONS**

### JP1 – LCD BACKLIGHT

1-2: Backlight ON No Jumper: Backlight OFF

### JP2 – Main Power Jumper

1-3: TIDE USB VBUS Selected. Recommend setting JP5 jumpers in 2-4 position. (DEFAULT)
5-3: JTAG USB VBUS Selected.
2-4: 5V DC Input from Wall Transformer is used –
6-4: MESA\_CARDPWR Selected.

### JP4 – TIDE USB RESET

No Jumper: FT245 TIDE USB Controller RESET# signal is pulled low 1-2: RESET# is de-asserted when USB is plugged in (DEFAULT) 2-3: RESET# is controlled by the FPGA

### JP3/J5 – EXTERNAL NMI

This is a single pin for connecting to the NMI pin of the WDC IO board.

### JP5 - TIDE USB POWER

- 2-4: Provides 5V supply from TIDE USB VBUS to Power the board. (DEFAULT)
- 3-4: Selects 3.3V supply for FT245RL TIDE USB Controller.
- 6-4: Selects 5V supply (non VBUS) for FT245RL TIDE USB Controller.
- 1-3: Invalid Jumper Setting DO NOT USE
- 5-3: Invalid Jumper Setting DO NOT USE

### JP6 - JTAG Header Connector:

Table 1 - JTAG Header Connector

| Pin | Signal Name |
|-----|-------------|
| 1   | +3.3V       |
| 2   | TDO         |
| 3   | TDI         |
| 4   | PROGB       |
| 5   | PROGB       |
| 6   | TRST        |
| 7   | TMS         |
| 8   | GND         |
| 9   | DONE        |
| 10  | INITB       |

### JP7 - SantaCRUZ power jumper

1-2: SantaCRUZ power connected No Jumper: SantaCRUZ power NOT Connected



## **Peripheral Interfaces**

### **Clock Sources**

A general purpose oscillator socket is provided. The default oscillator installed in the board is 24MHz. A on-board 25MHz oscillator supplies the FPGA (pin AD15), the CPLD (pin A8). The frequency can be measured via test point TP21 (CLKXO). To generate other clock frequencies use the PLLs of the FPGA. Detailed information on the usage of the PLLs can be found on the Lattice website and in the LatticeECP2/M Family Data Sheet.

The Cypress USB controller for ispDOWNLOAD configuration requires a 24MHz quartz crystal.

### Serial ATA (SATA) Interface

The SATA interface provides a convenient method for evaluating or using LVDS or LVPECL signals with the FPGA. The SATA connector has differential nets with high-speed signals connected to them. See Table 2 for SATA connection information (J12). The positive signal is connected with a plus (+), the negative with a minus (-).

Table 2 - SATA Connector J12

| Pin | Signal Name | FPGA Pin | Pin | Signal Name | FPGA Pin |
|-----|-------------|----------|-----|-------------|----------|
| 1   | GND         | -        | 2   | RXP         | A18      |
| 3   | RXN         | B18      | 4   | GND         | -        |
| 5   | TXN         | B21      | 6   | TXP         | A21      |
| 7   | GND         | -        | -   | -           | -        |

### **GPIO Expansion Connector**

The GPIO Expansion connector provides 20 user I/Os connected to the FPGA. The remaining pins serve as Ground pins (4 pins are currently unconnected). The expansion connector is configured as one 2x14 100mil centered pin header. This header is compatible with WDC's Parallel IO board but can be used for any purpose. Table 3 describes the connections to the FPGA.

| Pin | Signal Name | FPGA Pin | Pin | Signal Name | FPGA Pin |
|-----|-------------|----------|-----|-------------|----------|
| 1   | UNCONNECTED | -        | 2   | UNCONNECTED | -        |
| 3   | GND         | -        | 4   | GND         | -        |
| 5   | GPIO_HSI    | F18      | 6   | GPIO_HSO    | J20      |
| 7   | GPIO_DATA0  | F12      | 8   | GPIO_DATA1  | E12      |
| 9   | GPIO_DATA2  | A6       | 10  | GPIO_DATA3  | A7       |
| 11  | GPIO_DATA4  | A8       | 12  | GPIO_DATA5  | A9       |
| 13  | GPIO_DATA6  | D12      | 14  | GPIO_DATA7  | E13      |
| 15  | GPIO_SW1    | G10      | 16  | GPIO_SW2    | F17      |
| 17  | GPIO_LED7   | A5       | 18  | GPIO_LED6   | A4       |
| 19  | GPIO_LED5   | B7       | 20  | GPIO_LED4   | B8       |
| 21  | GPIO_LED3   | G11      | 22  | GPIO_LED2   | E11      |
| 23  | GPIO_LED1   | D11      | 24  | GPIO_LED0   | D10      |
| 25  | GND         | -        | 26  | GND         | -        |
| 27  | UNCONNECTED | -        | 28  | UNCONNECTED | -        |

#### Table 3 - GPIO Expansion Connector J4



### Santa Cruz Expansion Connector

The Santa Cruz expansion connector provides 46 user I/Os connected to the FPGA. The remaining pins serve as power and clock supplies for expansion boards. The expansion connector is configured as two 2x20 100mil centered pin headers (J1 and J2). Tables 4 and 5 describe the connections to the FPGA.

| Pin | Signal Name    | FPGA Pin   | Pin | Signal Name    | FPGA Pin |
|-----|----------------|------------|-----|----------------|----------|
| 1   | GND            | -          | 2   | VCC_50         | -        |
| 3   | SCRUZ_PIO[40]  | R5         | 4   | SCRUZ_PIO[29]  | N6       |
| 5   | SCRUZ_PIO[30]  | N2         | 6   | SCRUZ_PIO[31]  | P6       |
| 7   | SCRUZ_PIO[32]  | N5         | 8   | SCRUZ_PIO[33]  | P1       |
| 9   | SCRUZ_PIO[34]  | P2         | 10  | SCRUZ_PIO[35]  | P3       |
| 11  | SCRUZ_PIO[36]  | P4         | 12  | SCRUZ_PIO[37]  | R2       |
| 13  | SCRUZ_PIO[38]  | R3         | 14  | SCRUZ_PIO[39]  | R4       |
| 15  | SCRUZ_PIO[41]* | T1         | 16  | SCRUZ_PIO[42]* | T2       |
| 17  | SCRUZ_PIO[43]* | T6         | 18  | SCRUZ_PIO[44]* | T7       |
| 19  | SCRUZ_PIO[45]* | U1         | 20  | SCRUZ_PIO[46]* | U2       |
| 21  | Vunreg         | -          | 22  | GND            | -        |
| 23  | NC             | -          | 24  | GND            | -        |
| 25  | VCC_33         | -          | 26  | GND            | -        |
| 27  | VCC_33         | -          | 28  | GND            | -        |
| 29  | OSC            | M5         | 30  | GND            | -        |
| 31  | CLK1           | N1         | 32  | GND            | -        |
| 33  | CLK2           | AB6, N7*** | 34  | GND            | -        |
| 35  | VCC_33         | -          | 36  | GND            | -        |
| 37  | VCC_33         | -          | 38  | GND            | -        |
| 39  | VCC_33         | -          | 40  | GND            | -        |

#### Table 4 - Santa Cruz Expansion Connector J1

#### Table 5 - Santa Cruz Expansion Connector J2

| Pin | Signal Name   | FPGA Pin | Pin | Signal Name   | FPGA Pin |
|-----|---------------|----------|-----|---------------|----------|
| 1   | RESETB        | P5       | 2   | GND           | -        |
| 3   | SCRUZ_PIO[0]  | W5       | 4   | SCRUZ_PIO[1]  | Y4       |
| 5   | SCRUZ_PIO[2]  | W6       | 6   | SCRUZ_PIO[3]  | V6       |
| 7   | SCRUZ_PIO[4]  | AA3      | 8   | SCRUZ_PIO[5]  | AB2      |
| 9   | SCRUZ_PIO[6]  | T8       | 10  | SCRUZ_PIO[7]  | U7       |
| 11  | SCRUZ_PIO[8]  | U8       | 12  | SCRUZ_PIO[9]  | Т9       |
| 13  | SCRUZ_PIO[10] | V8       | 14  | SCRUZ_PIO[11] | W8       |
| 15  | SCRUZ_PIO[12] | Y6       | 16  | SCRUZ_PIO[13] | Y5       |
| 17  | SCRUZ_PIO[14] | AB3      | 18  | SCRUZ_PIO[15] | AB4      |
| 19  | GND           | -        | 20  | NC            | -        |
| 21  | SCRUZ_PIO[16] | AB5      | 22  | GND           | -        |
| 23  | SCRUZ_PIO[17] | AA6      | 24  | GND           | -        |
| 25  | SCRUZ_PIO[18] | V9       | 26  | GND           | -        |
| 27  | SCRUZ_PIO[19] | U9       | 28  | SCRUZ_PIO[20] | U10      |
| 29  | SCRUZ_PIO[21] | T10      | 30  | GND           | -        |
| 31  | SCRUZ_PIO[22] | W9       | 32  | SCRUZ_PIO[23] | Y8       |

THE WESTERN DESIGN CENTER, INC.



Terbi-ECP2Mulator User Guide

| 33 | SCRUZ_PIO[24] | AA7 | 34 | GND            | -   |
|----|---------------|-----|----|----------------|-----|
| 35 | SCRUZ_PIO[25] | Y7  | 36 | SCRUZ_PIO[26]  | AB7 |
| 37 | SCRUZ_PIO[27] | M3  | 38 | SCRUZ_CARDSELB | P7  |
| 39 | SCRUZ_PIO[28] | M4  | 40 | GND            | -   |

### **Mesa Expansion Connector**

**Table 6 - MESA Expansion Connector J3** 

The MESA Expansion Connector is a 100 pin connector providing 68 user I/Os connected to the FPGA. It is also compliant with T&MT USB PHY Standards. A T&MT PHY board can be added to Terbi for testing a USB PHY Macro cell. Table 6 describes the connections to the FPGA.

| Pin | Signal Name    | FPGA Pin | Pin | Signal Name   | FPGA Pin |
|-----|----------------|----------|-----|---------------|----------|
| 1   | MESA_GPIO0     | J22      | 2   | GND           | -        |
| 3   | MESA_GPIO2     | J16      | 4   | GND           | -        |
| 5   | MESA_GPIO4     | K16      | 6   | MESA_GPIO5    | L19      |
| 7   | MESA_GPIO7     | L17      | 8   | +3.3V         | -        |
| 9   | GND            | -        | 10  | MESA_VCTRL3   | P20      |
| 11  | MESA_GPIO9     | K22      | 12  | MESA_GPIO11   | L21      |
| 13  | GND            | -        | 14  | MESA_VCTRL4   | P21      |
| 15  | MESA_VDATA4    | AB17     | 16  | +3.3V         | -        |
| 17  | MESA_RESET     | V11      | 18  | MESA_CTRL5    | V15      |
| 19  | MESA_CTRL6     | V12      | 20  | MESA_CTRL7    | W12      |
| 21  | GND            | -        | 22  | MESA_SUSPENDB | U11      |
| 23  | MESA_CTRL2     | T11      | 24  | GND           | -        |
| 25  | MESA_CTRL3     | U12      | 26  | MESA_GPIO1    | K18      |
| 27  | GND            | -        | 28  | +5.0V         | -        |
| 29  | MESA_GPIO3     | K17      | 30  | MESA_VCTRL5   | P22      |
| 31  | MESA_DATA15    | AB14     | 32  | GND           | -        |
| 33  | MESA_DATA13    | AA13     | 34  | MESA_DATA11   | U15      |
| 35  | GND            | -        | 36  | MESA_DATA9    | Y12      |
| 37  | MESA_DATA7     | V10      | 38  | +3.3V         | -        |
| 39  | +3.3V          | -        | 40  | MESA_GPIO15   | M20      |
| 41  | MESA_DATA5     | Y9       | 42  | MESA_DATA3    | T14      |
| 43  | GND            | -        | 44  | MESA_DATA1    | AA10     |
| 45  | MESA_VDATA0    | AB10     | 46  | GND           | -        |
| 47  | MESA_CARDPWR   | -        | 48  | MESA_VDATA6   | AB8      |
| 49  | MESA_CARDPRESB | W11      | 50  | MESA_GPIO13   | M18      |
| 51  | GND            | -        | 52  | MESA_SYSCLOCK | R19      |
| 53  | GND            | -        | 54  | GND           | -        |
| 55  | MESA_VCTRL0    | N16      | 56  | MESA_GPIO6    | K21      |
| 57  | +3.3V          | -        | 58  | MESA_GPIO8    | L20      |
| 59  | MESA_VCTRL2    | P19      | 60  | MESA_CTRL12   | V13      |
| 61  | MESA_GPIO10    | L22      | 62  | GND           | -        |
| 63  | MESA_GPIO12    | L16      | 64  | MESA_CTRL0    | AA17     |
| 65  | GND            | -        | 66  | MESA_CTRL8    | AB16     |
| 67  | MESA_CTRL4     | AA16     | 68  | GND           | -        |
| 69  | +3.3V          | -        | 70  | MESA_VDATA1   | W14      |
| 71  | MESA_VDATA2    | AA15     | 72  | MESA_CTRL9    | AB15     |
| 73  | +3.3V          | -        | 74  | MESA_CTRL10   | T12      |
| 75  | MESA_CTRL13    | T13      | 76  | GND           | -        |
| 77  | MESA_CTRL11    | U13      | 78  | MESA_GPIO14   | M19      |
| 79  | MESA_VCTRL1    | P18      | 80  | GND           | -        |

THE WESTERN DESIGN CENTER, INC.



Terbi-ECP2Mulator User Guide

| 81 | +3.3V       | -    | 82  | MESA_DATA14   | Y14      |
|----|-------------|------|-----|---------------|----------|
| 83 | MESA_DATA12 | AA14 | 84  | GND           | -        |
| 85 | MESA_DATA10 | AB13 | 86  | MESA_DATA8    | AA12     |
| 87 | +3.3V       | -    | 88  | MESA_DATA6    | AB12     |
| 89 | MESA_CTRL1  | AB11 | 90  | MESA_DEVCLOCK | P21, L18 |
| 91 | MESA_DATA4  | Y11  | 92  | GND           | -        |
| 93 | MESA_DATA2  | U14  | 94  | MESA_DATA0    | AB10     |
| 95 | GND         | -    | 96  | MESA_VDATA3   | AA9      |
| 97 | MESA_VDATA5 | Y9   | 98  | MESA_VDATA7   | V10      |
| 99 | MESA VCTRL6 | V12  | 100 | GND           | -        |

# **User Interface Signals**

Figure 3 - User Interface Features





## **Dual 7-Segment Display**

The Dual 7-Segment Display is wired as follows:

Table 7 - Dual 7 Segment DISP1 Pin Definition



| Signal Name | Segment<br>Bit –<br>Digit 1 | FPGA Pin | Signal<br>Name | Segment Bit<br>Digit 0 | FPGA Pin |
|-------------|-----------------------------|----------|----------------|------------------------|----------|
| Dig1_0      | 0                           | L1       | Dig0_0         | 0                      | K5       |
| Dig1_1      | 1                           | L3       | Dig0_1         | 1                      | M7       |
| Dig1_2      | 2                           | L4       | Dig0_2         | 2                      | L7       |
| Dig1_3      | 3                           | L2       | Dig0_3         | 3                      | J4       |
| Dig1_4      | 4                           | K1       | Dig0_4         | 4                      | J5       |
| Dig1_5      | 5                           | K2       | Dig0_5         | 5                      | K6       |
| Dig1_6      | 6                           | L5       | Dig0_6         | 6                      | J6       |
| Dig1_7      | 7                           | L6       | Dig0_7         | 7                      | K7       |

The signals of the 7-segment display are active-low. When the signal is logic '0', the segment is lit.

### **User LEDs**

Eight LEDs can be used for custom status signaling. They signals of the LEDs are active-low. When the signal is logic '0', the LED is on. The LEDs are controlled using the signals below:

| LED | Signal Name | FPGA Pin | LED | Signal Name | FPGA Pin |
|-----|-------------|----------|-----|-------------|----------|
| 0   | LED_0       | F8       | 1   | LED_1       | C1       |
| 2   | LED_2       | B1       | 3   | LED_3       | F10      |
| 4   | LED_4       | E10      | 5   | LED_5       | D9       |
| 6   | LED_6       | C5       | 7   | LED_7       | A3       |

#### Table 8 - User LED – LED\_7-LED\_0 Connection



### **Rotary Switch**

The Rotary Switch (CD16RK1) is a 16 position (no complement) hexadecimal switch with knob.



#### Table 9 - Rotary Switch S5 Connection

| HEX | Signal Name | FPGA Pin | HEX | Signal Name | FPGA Pin |  |  |
|-----|-------------|----------|-----|-------------|----------|--|--|
| 1   | DEBUGSEL0   | F7       | 4   | DEBUGSEL2   | G7       |  |  |
| 2   | DEBUGSEL1   | E8       | 8   | DEBUGSEL3   | G8       |  |  |

Below is a table showing the value of each HEX signal based on the position of the rotary switch.

| POS. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | А | В | С | D | Е | F |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| С    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 1    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 2    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 4    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 8    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

### **LCD Connector**

The LCD connector is a 16-pin header with a standard pinning for LCD modules with back-light (e.g. Truly MTCC202DPRN-1N). In order to use an LCD module, attach it to the connector via a 16-pin ribbon cable or connector built on LCD. Put a jumper on connector JP1 to turn on the backlight of the LCD. The contrast of the LCD module is adjustable with the potentiometer POT1, because different LCD modules need different voltages for the best contrast.

Note: The LCD module is tied to a 5V supply. The LatticeECP2-50 to LCD interface is 3.3V.



#### Table 10 - LCD Connector J11 Pin Definition

| Pin | Signal Name | FPGA Pin | Pin | Signal Name | FPGA Pin |  |
|-----|-------------|----------|-----|-------------|----------|--|
| 1   | GND         | -        | 2   | VCC5V       | -        |  |
| 3   | CONTRAST    | -        | 4   | LCD_REGSEL  |          |  |
| 5   | LCD_RWB     | E3       | 6   | LCD_EN      | E4       |  |
| 7   | LCD_DATA0   | E5       | 8   | LCD_DATA1   | D3       |  |
| 9   | LCD_DATA2   | C2       | 10  | LCD_DATA3   | C3       |  |
| 11  | LCD_DATA4   | D4       | 12  | LCD_DATA5   | D7       |  |
| 13  | LCD_DATA6   | E6       | 14  | LCD_DATA7   | D6       |  |
| 15  | BACKLIGHT   | -        | 16  | GND         | -        |  |

### **Pushbuttons**

The board is equipped with 4 pushbuttons, two of which are user selectable.

Table 11 - Pushbutton U1, U2, NMI, RES Connection

| Button | Signal Name | FPGA Pin | Button | Signal Name | FPGA Pin |  |  |
|--------|-------------|----------|--------|-------------|----------|--|--|
| U1     | USER_PB1    | D8       | NMI    | NMIB_IN     | B6       |  |  |
| U2     | USER_PB2    | C8       | RES    | RESB_IN     | C7       |  |  |



## **Components**

### CPLD

The Lattice MachXO LCMXO640 is a non-volatile, instant-on, reprogrammable logic device. It supports "background programming" called TransFR<sup>™</sup> (i.e., the device can be programmed while in operation). The MachXO comes preprogrammed from the factory. The factory program permits the CY7C68013A/MachXO combination to work as a built-in USB ispDOWNLOAD cable. Using ispVM software the built-in download cable permits the FPGA, and SPI PROM, to be programmed. It is not recommended for the MachXO to be reprogrammed.

For further information, please consult the MachXO Family Data Sheet.

### **FPGA**

The LatticeECP2M-50-484 FPGA represents the heart of the board. It has the following features:

- 48 k Look-Up Tables (LUTs)
- 101 kbits of distributed RAM
- 4147 kbits of EBR SRAM
- 225 sysMEM blocks (18kb)
- 22 sysDSP blocks
- 88 18 x 18 multipliers
- 10 PLLs: 2 GPLLs, 6 SPLLs, 2 GDLLs
- 270 user I/Os
- DDR memory support (DDR1-400, DDR2-400)
- Supported I/O standards: LVCMOS, LVTTL, SSTL, HSTL, LVDS, PCI, differential
- HSTL, differential SSTL, RSDS, Bus LVDS, MLVDS, LVPECL

The ispLEVER design software can be used to develop/modify programs for the FPGA using Verilog or VHDL design entry methods. For more information on the ispLEVER software, see www.latticesemi.com/software.

For further information please consult the LatticeECP2/M Family Data Sheet.



## **Appendix A. Schematics**

**Page 1/6** 





Page 2/6





Terbi-ECP2Mulator User Guide

**Page 3/6** 





Page 4/6













**Page 6/6** 







Terbi-ECP2Mulator User Guide

## **Appendix B. Example and Demo Code Projects**

The Terbi Development Kit comes with 2 65xxProSDK projects of basic example code to interface to the W65C02SPMCU core. One project is in C code source, and the other is in Assembly code source.

To download this code into the Terbi-ECP2Mulator:

- Make sure that the W65C02SPMCU Lattice project has been programmed into the EPC2M FPGA (refer to the Lattice W65C02SPMCU build document)
- Make sure the Lattice build downloaded had the MON6502-USB.MEM file included (to allow USB interface with TIDE)
- That the TIDE USB cable is connected (not just the Lattice JTAG USB cable)
- Use TIDE from the 65xxProSDK tool suite to open and download the desired example/demo project. (Refer to the TIDE user manual for details)

Both example/Demo programs perform the same function. Below is a list of what this example code does:

- On reset:
  - Write a simple pattern to memory at 0x3000 starting with 0x52 (ASCII 'R')
  - Display "65" on 2 digit LED display
- On NMI:
  - Write 0x4E (ASCII 'N') to 0x3000
  - Display "E1" on 2 digit LED display
- On IRQ:
  - Write 0x49 (ASCII "I") to 0x3000
  - Display "E2" on 2 digit LED display
- Turn on/off LEDs in an animated "scan back/forth" pattern, repeating every 5 seconds
- If USER1 pushbutton is pressed:
  - Pause LED animation described above
  - Display current setting of Rotary switch as a single hex digit on the LED display, and the bitwise NOT as the other hex digit
  - Each time the USER1 pushbutton is pressed again, advance the LED scan animation to the next step
- If USER2 pushbutton is pressed:
  - Show "65" on LED display again
  - Continue LED scan animation at last rate
  - Each time the USER2 pushbutton is pressed again, speed up the LED animation rate from 5.0 seconds, to 2.5, to 1.0, to 0.5, then back to 5.0 (change speed with each press of USER2 pushbutton
- Both USER1 and USER2 pushbuttons are de-bounced by 25ms in software

#### Listing 1 – C-TerbiDemo Source code

<will be added when code is complete and tested>

#### Listing 2 – A-TerbiDemo Source code

<will be added when code is complete and tested>