

 September 12, 2013 W65C02S C Compiler/Optimizer

WDCTools
W65C02S C COMPILER/OPTIMIZER

USER GUIDE

 W65C02S C Compiler/Optimizer

2

WDC reserves the right to make changes at any time without notice in order to improve design and
supply the best possible product. Information contained herein is provided gratuitously and without
liability, to any user. Reasonable efforts have been made to verify the accuracy of the information but no
guarantee whatsoever is given as to the accuracy or as to its applicability to particular uses. In every
instance, it must be the responsibility of the user to determine the suitability of the products for each
application. WDC products are not authorized for use as critical components in life support devices or
systems. Nothing contained herein shall be construed as a recommendation to use any product in
violation of existing patents or other rights of third parties. The sale of any WDC product is subject to all
WDC Terms and Conditions of Sales and Sales Policies, copies of which are available upon request.

Copyright ©1981-2013 by The Western Design Center, Inc. All rights reserved, including the right of
reproduction, in whole, or in part, in any form.

 W65C02S C Compiler/Optimizer

3

TABLE OF CONTENTS

Chapter 1 Introduction……………………………………………………………………......9
 Compiler Operation………………………………………………………………………………………………9

Input File .. 9
Output Files .. 9

Creating an Object File .. 9
Creating an Assembly Language File .. 10

Searching for #Include Files ... 10
Search Order #include ... 11

Compiler Options.. 11
Compiler Option Philosophy .. 11
CCOPT6502 Environment Variable ... 11

C Programs in ROM ... 12
C Program Organization .. 12
System Organization .. 12
Creating A ROM Program .. 12

CHAPTER 2 WDC02C ...15
Configuring the Program .. 15

User Registers ... 15
Stack Registers ... 16
Compiler Registers ... 16
Work Area .. 17
Floating Point Registers ... 17

Running the Program ... 17
Option Summary .. 18
Option Descriptions .. 19

CHAPTER 3 Technical Notes ...27
Pseudo-Registers ... 27
Pseudo-Stack Frame .. 27
Function Calls and Argument Passing ... 28

Function Arguments ... 28
Function Return Value .. 29

Startup Code .. 29
Identifier Name Prefixes ... 29

Memory Management .. 29
CAVEATS .. 30

Floating Point Considerations ... 30
Section Pragma ... 30

Consts and Strings ... 31
In-Line Assembly Code .. 31
ASM Keyword .. 32
Other Preprocessor Features ... 32

Predefined Names .. 32
#line .. 32

 W65C02S C Compiler/Optimizer

4

Producing Optimum Code .. 33
Optimizer .. 33
Floating Point ... 33
Referencing I/O .. 33
Prototyping Functions ... 35
Variable Name Length .. 35
Debugging .. 35
Assembling Compiler Output Considerations ... 36
Volatile Qualifiers ... 36
Path size Limitation .. 36
Global Function and Variable Definition ... 36
Factorization of Source Code ... 36

CHAPTER 4 Libraries ...37
Library Names .. 37
ANSI Functions .. 37
Heap Functions .. 37

APPENDIX A WDC Supported C Functions ..39
APPENDIX B Description of Compiler Error Messages ..45

1: bad digit in octal constant ... 45
2: obsolete .. 45
3: unterminated string ... 45
4: argument type mismatch ... 45
5: invalid type for function .. 45
6: inappropriate arguments ... 45
7: bad declaration syntax .. 45
8: syntax error in typecast ... 46
9: invalid operand of & (address of) ... 46
10: array size must be positive integer .. 46
11: obsolete .. 46
12: invalid pointer reference ... 47
13: obsolete .. 47
14: obsolete .. 47
15: storage class conflict .. 47
16: data type conflict .. 47
17: internal .. 47
18: data type conflict .. 48
19: bad syntax .. 48
20: structure redeclaration .. 48
21: missing } ... 48
22: syntax error in structure declaration .. 48
23: syntax error in enum declaration .. 49
24: need right parenthesis or comma in arg list .. 49
25: structure member name expected here ... 49
26: must be structure/union member ... 49

 W65C02S C Compiler/Optimizer

5

27: invalid typecast .. 50
28: incompatible structures .. 50
29: invalid use of structure .. 50
30: missing : in ? conditional expression .. 50
31: call of non-function .. 50
32: invalid pointer calculation ... 50
33: invalid type ... 51
34: undefined symbol .. 51
35: typedef not allowed here ... 51
36: obsolete .. 51
37: invalid or missing expression ... 51
38: obsolete .. 51
39: enum redeclaration .. 52
40: internal error ... 52
41: initializer not a constant .. 52
42: too many initializers ... 52
43: initialization of undefined structure ... 53
44: missing right paren in declaration .. 53
45: bad declaration syntax .. 53
46: missing closing brace ... 53
47: open failure on include file .. 54
48: invalid symbol name .. 54
49: multiply defined symbol .. 54
50: missing bracket .. 54
51: lvalue required .. 54
52: obsolete .. 55
53: multiply defined label .. 55
54: obsolete .. 55
55: missing quote ... 55
56: missing apostrophe ... 55
57: obsolete .. 55
58: invalid # encountered .. 55
59: macro too long ... 55
60: loss of const/volatile info ... 56
61: reference to undefined structures .. 56
62: function body must be compound statement .. 56
63: undefined label ... 56
64: inappropriate arguments ... 56
65: invalid function argument ... 57
66: expected comma .. 57
67: invalid else .. 57
68: bad statement syntax .. 57
69: missing semicolon ... 58
70: goto needs a label .. 58

 W65C02S C Compiler/Optimizer

6

71: statement syntax error in do-while ... 58
72: statement syntax error in for ... 58
73: statement syntax error in for body ... 58
74: expression must be integer constant ... 58
75: missing colon on case ... 58
76: obsolete .. 58
77: case outside of switch ... 59
78: missing colon on default ... 59
79: duplicate default ... 59
80: default outside of switch ... 59
81: break/continue error .. 59
82: obsolete .. 59
83: too many nested includes ... 59
84: constant expression expected .. 59
85: not an argument ... 59
86: null dimension in array .. 59
87: invalid character constant ... 60
88: not a structure .. 60
89: invalid use of register storage class .. 60
90: symbol redeclared ... 60
91: invalid use of floating point type .. 60
92: invalid type conversion ... 60
93: invalid expression type for switch .. 61
94: invalid identifier in macro definition ... 61
95: obsolete .. 61
96: missing argument to macro .. 61
97: too many arguments in macro definition ... 61
98: not enough args in macro reference .. 61
99: internal error ... 61
100: internal error ... 61
101: missing close parenthesis on macro reference .. 61
102: macro arguments too long .. 61
103: #else with no #if ... 61
104: #endif with no #if .. 62
105: #endasm with no #asm .. 62
106: #asm within #asm block .. 62
107: missing #endif .. 62
108: missing #endasm ... 63
109: obsolete .. 63
110: invalid use of : operator .. 63
111: invalid use of a void expression ... 63
112: obsolete .. 63
113: duplicate case in switch .. 63
114: macro redefined ... 63

 W65C02S C Compiler/Optimizer

7

115: keyword redefined ... 64
116: field width must be > 0 ... 64
117: invalid 0 length field ... 64
118: field is too wide .. 64
119: field not allowed here .. 65
120: invalid type for field ... 65
121: ptr/int conversion ... 65
122: ptr & int not same size ... 65
123: far/huge ptr & ptr not same size ... 65
124: invalid ptr/ptr expression .. 65
125: too many subscripts or indirection on integer .. 65
126: too many arguments .. 66
127: too few arguments ... 66
128: #error ... 66
129: #elif with no #if ... 66
130: obsolete .. 66
131: ## at the beginning/end of macro body ... 66
132: obsolete .. 66
133: # not followed by a parameter ... 66
134: obsolete .. 66
135: attempt to undefined a predefined macro .. 66
136: invalid #include directive .. 66
137: obsolete .. 67
138: missing right paren .. 67
139: missing identifier ... 67
140: obsolete .. 67
141: obsolete .. 67
142: range-modifier ignored .. 67
143: range-modifier syntax error .. 67
144: invalid operand for sizeof .. 67
145: function called without prototype ... 67
146: constant value too large .. 67
147: invalid hexadecimal constant ... 67
148: invalid floating constant .. 67
149: invalid character on control line ... 68
150: unterminated comment ... 68
151: no block level extern initialization .. 68
152: missing identifier in parameter list ... 68
153: missing static function definition ... 68
154: function definition can’t be via typedef .. 68
155: file must contain external definition ... 68
156: wide string literal not allowed here .. 69
157: incompatible function declarations .. 69
158: called function may not return incomplete type .. 69

 W65C02S C Compiler/Optimizer

8

159: syntax error in #pragma .. 69
160: auto variable not used in function .. 69
161: function defined without prototype .. 69
162: can’t take address of register class ... 69
163: upper bits of hex character constant ignored ... 70
164: non-void type function must have return value .. 70
165: item not previously declared found in prototype .. 70
166: enum must be declared outside prototype .. 70
167: can’t take address of stack in this memory model 71
168: missing semicolon in asm block .. 71
169: can’t convert far pointer to near ... 71
170: can’t use TSB/TRB on volatile values .. 71

INDEX ...73

 W65C02S C Compiler/Optimizer

9

CHAPTER 1 Introduction

The WDCTools suite provides the tools needed to do effective C and assembly language development for
the 65C02 family of microprocessors. The compiler is built on top of the WDC W65xx assembly language
development system. The assembly language development system consists of a full macro assembler,
an object file linker and an object file librarian.

Compiler Operation

The WDC C compiler is a full ANSI standard implementation. There are also a number of useful
extensions to the ANSI standard that are controlled by compiler switches. The compiler reads the input
file function by function and produces a parse tree for the entire function. A few optimizations are
performed on the tree before generating code. The code generator then reads the parse tree and
generates a list of assembly language instructions that are written to a temporary file. If the optimizer has
been invoked, it reads the assembly language file, improves the code where possible and writes it back
out. The assembler is then executed to convert the assembly language instructions into object format.
The assembler deletes the temporary file after finishing.

Input File Example:

The input file is a text file which contains the C source code. The file can be specified using a full path
such as:

WDC02CC C:\SRC\HELLO.C

or by the file name alone if the file is located in the current directory such as:

WDC02CC HELLO.C

If the command that starts the compiler does not specify the extension of the file containing the C source,
the compiler assumes that the extension is `.C'. For example, the command

WDC02CC PROG

compiles a file named PROG.C in the current directory. Although `.C' is the recommended file extension
name, it is not mandatory. The specification

WDC02CC PROG.PRG

reads the file PROG.PRG from the current directory as the input to the compiler.
Input files can be created with the text editor of your choice, but the file must be straight text and can not
contain any formatting commands such as those produced by a word processor.

Output Files Examples:

Creating an Object File

 W65C02S C Compiler/Optimizer

10

Normally, when you compile a C program you are interested in the relocatable object code for the
program, and not in its assembly language source. Because of this, the compiler by default writes the
assembly language source for a C program to an intermediate file and then automatically starts the
assembler. The assembler then translates the assembly language source to relocatable object code,
writes this code to a file, and erases the intermediate file. By default, the object code generated by a
compiler-started assembler is sent to a file whose name is derived from that of the file containing the C
source by changing its extension to .OBJ. This file is placed in the directory that contains the C source
file. For example, if you started the compiler with the command:

WDC02CC PROG.C

The file PROG.OBJ is created, containing the relocatable object file for the program. You may explicitly
specify the name of the object file using the compiler option -O. For example, the command

WDC02CC -O MYOBJ.REL PROG.C

Compiles and assembles the C source that is in the file PROG.C, writing the object code to the file
MYOBJ.REL. When the compiler is going to start the assembler automatically, by default it writes the
assembly language source to the file CTMPXXX.XXX, where `XXX' are numbers chosen such that the file
name is unique. The file is placed in the directory defined by the CCTEMP environment variable. If
CCTEMP is not defined, the file is placed in the current directory. The CCTEMP environment variable
can be used to pass the intermediate assembly language file to the assembler through a RAM disk.

Creating an Assembly Language File

In some programs, you may not want the compiler to start the assembler automatically. For example, you
may want to modify the assembly language generated by the compiler for a particular program. In such
cases, use compiler option -A, which prevents the compiler from starting the assembler. When you
specify option -A, by default the compiler sends the assembly language source to a file whose name is
derived from that of the C source file, by changing the extension to .ASM. This file is placed in the same
directory as the one that contains the C source file. For example, the command

WDC02CC -A PROG.C

compiles, without assembling, the C source that is in PROG.C, sending the assembly language source to
PROG.ASM. When using option -A, option –O specifies the name of the file to which the assembly
language source is sent. For example, the command

WDC02CC -A -O RAM:TEMP.ASM PROG.C

compiles, without assembling, the C source in PROG.C, sending the assembly language source to the file
TEMP.ASM on the volume named RAM:. When option -AT is used, it causes the compiler to include the
C source statements as comments in the assembly language source.

Searching for #Include Files

By default, the WDC C compiler searches the current directory to locate files specified in #include
statements. It can also search a user-specified sequence of directories for such files, thus allowing
program source files and header files to be contained in different directories. Compiler option –I and the
environment variable WDC_INC_6502 define the directories in which the compiler searches for #include

 W65C02S C Compiler/Optimizer

11

files. The compiler automatically searches the current directory for a #include file if the following
conditions are met:

1. the compiler is started without specifying option -I,
2. there is not an WDC_INC_6502 environment variable, and
3. the #include statement does not specify the drive and/or, directory containing the

file.

If a #include statement specifies either the drive or directory, only that location is searched for the file.

Search Order #include

When the compiler encounters a #include statement, it searches directories for the file specified in the
statement in the following order:

• if the filename is delimited by double quotes, ``filename'', the current directory is
searched.

• if the filename is delimited by angle brackets, <filename>, the current directory is
searched only if no -I options are specified and if the WDC_INC_6502 environment
variable does not exist.

• directories specified in option -I are searched, in the order listed on the line that
started the compiler.

• directories specified in the WDC_INC_6502 environment variable are searched, in
the order listed.

Compiler Options

Compiler Option Philosophy

Most of the compiler options are set up as a toggle, which means that they can be either on or off. Most
options default to off. The defaults can be changed by creating an environment variable, CCOPT6502.
Options specified directly to the compile command will override options specified in the CCOPT6502
environment variable. With a few exceptions, options are grouped around a common function. The first
letter of an option identifies the group. The group letters are:

A Assembly language output control
B Debugging control
M Memory model control
P Parser control
Q Output control
S Optimization control
W Warning control

After the group letter, one or more individual options may be specified. If an individual option letter occurs
and is not preceded by a 0(zero), the associated option is turned on. Multiple individual options can be
specified. To turn an option off, the character 0(zero) must appear after the group letter and before the
options to be turned off. -P0T, for instance, turns off trigraphs and -PT or -P1T turns them on.
Combinations of options can be used to produce very specific results. To enable full ANSI syntax
checking with the singular exception of trigraphs, for example, you would use the option -PA0T. The A
option of the P group specifies full ANSI which includes trigraphs. The 0T option turns trigraphs off.
Since options are scanned left to right the combination -PA0T produces the desired result. -P0T1A would

 W65C02S C Compiler/Optimizer

12

not produce the intended result. Since the 1A option is scanned after the 0T option, the 0T option is
cancelled.

CCOPT6502 Environment Variable

You can override the default settings of the compiler by using the environment variable, CCOPT6502. If
you want to disable C++ style // comments as the default, for example, you could place the following line
in your AUTOEXEC.BAT file:

SET CCOPT6502=-P0X

which would prevent the compiler from considering characters following a // as a comment till the end of
the line. The CCOPT6502 specification should have no blanks on either side of the equal sign. Options
passed directly to the compiler override the CCOPT6502 environment variable. If the CCOPT6502
environment variable was set to -P0X and you specified -PX as a direct option to the compiler, then the
CCOPT6502 -P0X option would be reversed. If you wish to specify more than one option with the
CCOPT6502 environment variable, then each option group must be separated by a blank. For example,

SET CCOPT6502=-P0X -MO -WO

would set the -P0X, -MO and -WO options. Note that CCOPT6502 must be specified in upper case.

C Programs in ROM

This section discusses the general procedure of placing C code in ROM. It describes some of the
choices that are available and the steps required to create the final output.

C Program Organization

After compilation and linking, a C program consists of three sections: code, initialized data, and
uninitialized data. The difference between initialized and uninitialized data is demonstrated by the
following two C statements:

int x = 1;
int y;

In the first statement, the global variable x has memory space allocated for it which is initialized to contain
the value 1. The second statement allocates memory space for the variable y, and by C convention, is
initialized to zero by default. The second variable, y, is considered uninitialized data since it is never
explicitly set to a particular value. In a C program, all uninitialized data is collected together for efficiency.
Otherwise, there might be a lot of zeros spread throughout the data segment. This is especially important
in a ROM-based system where instead of copying zeros from ROM to RAM, it is much more efficient just
to clear the uninitialized area of RAM to zero.

System Organization

To operate correctly, a system must contain as much ROM and RAM as are needed to get the job done.
The ROM is located at whatever address is convenient. Usually the ROM is located at the high end of
bank zero so that the interrupt and reset vectors have defined values when the system is powered up.
Some amount of RAM is also required for the stack and direct page access. The main program code is
stored in the ROM which is where it is usually executed from since the code itself does not change.
Initialized data is also stored in ROM so that it is available when the system is powered up. However,
initialized data often represents the initial state of variables that may be changed by the program. Since

 W65C02S C Compiler/Optimizer

13

variables in ROM can't change, the variables must be in RAM. When the system is reset, the initial
values in ROM are copied to the RAM locations. Thus, initialized data has two locations, the RAM
address where the program code will access it and a ROM address where it is copied from. The WDC C
development system is set up so that the initialized data can be stored in ROM immediately following the
program code. This allows the startup code to know where to find the initialized data so it can be copied
to RAM.

Creating A ROM Program

Let's assume that we are creating a ROM program. To compile we would use:

WDC02CC MYPROG.C

Included in the WDC_SDS\LIBSRC\S65C02 directory is an example startup assembly language source
file. Copy the one called STARTUP.ASM into the current directory. This file contains the reset and
interrupt vectors and a short sequence of code that sets up the machine stack pointer, the pseudo-stack
pointer, copies the initialized data to RAM, clears out the uninitialized data and then transfers control to
main(). The default is for the machine stack to start at 0x1FF and the pseudo-stack to start at 0x7fc0 and
we'll leave them there. Assemble the startup file by using the command:

WDC02AS STARTUP.ASM

Now, we need to create the output file. For this example, let's say that we want the code to be located in
ROM at location 0x8000 and that the data will be located in RAM starting at location 0x200. The initial
values of the data will actually reside in the ROM immediately following the program code. To link the
modules together, we would use the command:

WDCLN -HM28 -C8000 -D200, MYPROG.OBJ STARTUP.OBJ -LC

The first option to the linker specifies that the output will use Motorola S-28 records which have a 24 bit
address field. (A full description of the linker and its options can be found in the Assembly Language
Development System manual.) Next, the address of the code is specified to be at location 0x8000. The -
D option tells the linker to locate the address of the data at 0x200, but to place the actual output
immediately following the code. The address options seem complicated but are not really too difficult. In
general, if no addressing option is given, then one section is placed immediately following the preceding
section. The first section is the code, followed by initialized data, and finally uninitialized data. Each
address option consists of an address where the code or data is eventually expected to be located. For
code, this is the address where subroutine calls will be made to and is usually in ROM. For data, this is
the address where program code will load and store into and is usually in RAM. Following the `use'
address is an optional comma and a physical location address. The physical location address is the
address that will be placed in the hex records generated by the linker. For program code, the physical
and use addresses are almost always the same. Thus, to locate code at location 0x8000, the option:

-C8000,8000

would be correct. However, the linker assumes that if no comma and second argument are present, then
the physical and use addresses are the same. Thus, the preceding option could also be given as:

-C8000

For initialized data, the use address is typically in RAM, while the initial physical location is in ROM. One
way to handle this is to specify the exact address in RAM and in ROM as in:

-D200,8800

 W65C02S C Compiler/Optimizer

14

which would place the data at location 0x8800 in ROM although the program code would be looking for it
at location 0x200.
One of the problems with this approach is that we would have to know that the size of the program was
less than 0x800 bytes or the data would overwrite the program code or vice-versa. An easier method
would be to use the option:

-D200,

which tells the linker to locate the data for use at location 0x200, and by using a comma without an
address, to place it physically right after the preceding section which would be the program code. The
assembly language startup routine in STARTUP.ASM assumes that the initialize data is located
immediately following the code section and copies it to it's `use' location in RAM. Further discussion of
sections and linking as well as a full analysis of a startup routine can be found in the Assembly Language
Development System manual.

 W65C02S C Compiler/Optimizer

15

CHAPTER 2 WDC02CC

The WDC C compiler is a full ANSI standard implementation. There are also a number of useful
extensions to the ANSI standard which are controlled by compiler switches.

Configuring the Program

The WDC 65C02 C compiler makes use of a number of zero-page locations to generate smaller and
faster code and to implement a 16-bit stack pointer. The exact locations used by the compiler are
specified in two files: WDC_SDS\BIN\WDC02CC.CFG and WDC_SDS\INCLUDE\ZPAGE.INC. The first
file is used by the compiler and debugger to know the locations. The second file is included by assembly
language programs in the library. Note that any changes to these files must be made to both files
and the library and any user programs must be recompiled and reassembled. Because different
applications may have different zero-page requirements and availability, it is possible to change the
configuration to match the project at hand. This is done by editing the two files mentioned above and
then rebuilding the library and application. Note that if the default values are acceptable, no changes
need to be made. The zero-page locations are broken into groups which do not need to be contiguous.
The following sections describe the zero page locations and their use.

User Registers

The compiler uses some zero page locations for it's own temporary pseudo-registers. The compiler can
also use zero page locations for user defined pseudo-register variables. This is very important for
generating smaller faster code, especially when pointers are used. For example, when a pointer is
dereferenced like *cp, the code normally generated if cp is a local on the pseudo-stack would be:

LDY #250 ; offset of cp within frame
LDA (FP),Y
STA R0
INY
LDA (FP),Y
STA R0+1
LDA (R0)

If cp is a register variable, the code would be:

LDA (cp)

which is clearly smaller and faster. Register variables can be allocated using the register keyword or by
using the compiler -SR option, they can be allocated automatically. The configuration for user registers
consists of two values, the base address for the user registers and the number of bytes available for user
registers. The WDC_SDS\BIN\WDC02CC.CFG file contains the following two lines:

User Register Count=16 ; count of user register bytes
User Register Start=0x20 ; N byte user register area

 W65C02S C Compiler/Optimizer

16

where User Register Count is the number of bytes available (the default is 16) and User Register Start is
the base address (the default is 0x20). If zero-page space is at a premium, the User Register Count can
be set to zero with no adverse effects. This is the only area with a variable size.

The INCLUDE\ZPAGE.INC file contains the following lines:

************* User Register Start and Count ******************************

org $20 ;16 byte User Register area

REGS rmb 16 ; User Register Count

These lines should be changed to reflect any changes made to the WDC_SDS\BIN\WDC02CC.CFG file.

Stack Registers

There is an eight byte stack register are which holds the return address, the pseudo-stack pointer and two
frame pointers. The line to be changed in WDC_SDS\BIN\WDC02CC.CFG is:

Stack Register Start=0x30 ; 8 byte stack area

The default start of the stack area is 0x30.
 The lines to be changed in WDC_SDS\INCLUDE\ZPAGE.INC are:

************* Stack Register Start ***************************************

org $30 ; 8 byte Stack Register area

VAL rmb 2
SP rmb 2
AFRAME
FRAME rmb 2
LFRAME
PC rmb 2

Only the ORG statement needs to be adjusted.

Compiler Registers

There are five four-byte pseudo-registers used by the compiler to hold intermediate results and return
values from functions. The twenty byte area is defined in the configuration file with the following line:

Compiler Register Start=0x38 ; 20 byte compiler temporary register area

The default start of this area is 0x38.
 The lines to change in the include file are:

************* Compiler Register Start ************************************

org $38 ; 20 byte tmp register area

R0 rmb 4
R1 rmb 4
R2 rmb 4

 W65C02S C Compiler/Optimizer

17

R3 rmb 4
R4 rmb 4

Only the ORG statement needs to be changed.

Work Area

There is an eight byte general purpose work area used by the compiler support subroutines. This area is
defined by the following line in the configuration file:

Work Register Start=0x4c ; 8 byte general purpose work area

and by the following lines in the include file:

************* Work Register Start **

org $4c ;8 byte zero page temporary area

TMP rmb 8

Floating Point Registers

The compiler and floating point library functions perform all floating point operations using two zero-page
floating point registers. Each register is eleven bytes for a total of twenty-two bytes. The format is
“double” IEEE-754 standard 1985, 64 bit mantissa (8 bytes), 16 bit exponent (2 bytes), 1 bit sign. If
floating point is not used, then these bytes are free for use for other purposes.

 The line in the configuration file is:

Float Register Start=0x54 ; 22 byte floating point area

while the lines in the include file are:

************* Float Register Start ***************************************

org $54

Exp0 rmb 2 ; 11 byte area for FP0
Sign0 rmb 1 ; must be in this order
FP0 rmb 8

Exp1 rmb 2 ; 11 byte area for FP1
Sign1 rmb 1 ; must be in this order
FP1 rmb 8

Running the Program

The format of the WDC C compiler command is:

WDC02CC [OPTIONS] SRCFILE

 W65C02S C Compiler/Optimizer

18

where SRCFILE is the name of the C source file, and the brackets around options indicate that they are
not required. The compiler only deals with a single file at a time and must be restarted to compile any
additional files.

 W65C02S C Compiler/Optimizer

19

Option Summary

-A Causes the compiler not to start the assembler after it has compiled a program. Only an
assembly file is created.
-AT Same as -A, but also imbeds C source statements into the assembly code.
-BS Generate source level debugging information.
-D Defines a symbol for the preprocessor.
-HI Read pre-compiled header file into symbol table.
-HO Create a pre-compiled header file.
-I Specifies path for include files.
-L Creates a listing from the compiler output to be passed to the assembler output.
-LT Generates listing with embedded source statements
-LW Modifies the –L option to set the listing to a wide format of 132 columns
-MO Generate module headers for library functions.
-MU Place initialized const data in the compiler CONST section.
-MV Place string data in the compiler STRING section.
-O Specifies name to be used for output files.
-PA Turns on ANSI preprocessor and trigraphs. Turns off non-ANSI options.
-PB Make bitfields unsigned by default.
-PC Allows extra characters after #endif or #else.
-PE Causes enums to occupy only the amount of space needed.
-PP Make characters default to signed.
-PT Looks for trigraphs in the input stream.
-PX Allows C++ style comments.
-QA Causes generated prototypes to use _ _PARMS(()) syntax.
-QP Generates prototypes for all non-static functions.
-QQ Disables startup and error messages from being displayed.
-QS Generates prototypes for all static functions.
-QV Generates verbose information on memory usage.
-SF Generates an optimized for(;;) loop.
-SM Defines the __C_MACROS__ macro.
-SO A shorthand way of specifying -SFMR.
-SP Invoke the post-pass peephole optimizer, WDC02OPT.
-SR Automatically use register variables.
-SX Enable factorizing in the Optimizer on a source file. (-SP must also be specified!)
-WA Complains on arguments which do not match the prototype specification.
-WD Generates warnings for non-prototype style function definitions.
-WE Quit on warnings. Treats warnings as errors.
-WL Shorthand for -WARU and stands for lint.
-WN Do not generate warnings on direct pointer to pointer conversions.
-WO Causes pointer/int conflicts to generate warnings rather than errors.
-WP Generates a warning if a function is called without a prototype being defined for the function.
-WQ Print warnings and errors to the file WDC.ERR.
-WR Warns if function return type does not match declared type.
-WS Ignores all warnings.
-WU Warns about unused local variables.
-WW Allows compiler to continue beyond 5 errors.

 W65C02S C Compiler/Optimizer

20

Option Descriptions

-A

Normally, the compiler generates assembly language to a temporary file that is assembled by the
assembler and then deleted. This option tells the compiler to only generate an assembly language file.
The default name of the created assembly language file is formed by taking the root part of the source file
name and appending .ASM. The -O option can be used to exactly specify the name of the assembly
language output file.

For example:

WDC02CC -A MYFILE.C
WDC02CC -A -O SAVE.ASM MYFILE.C

The first command compiles the file MYFILE.C and places the assembly language output into a file called
MYFILE.ASM. The second example compiles the same source file, but places the output into the file
SAVE.ASM.

-AT

This option is identical to the -A option except that the compiler copies the C source statements to the
assembly language output file as comments.

For example:

WDC02CC -AT MYFILE.C

This command compiles the file MYFILE.C and places the assembly language output into a file called
MYFILE.ASM with the C statements embedded as comments.

WARNING: The option –AT can hide error messages and cause problems for the optimizer.

-BS

This option tells the compiler to add source level debugging information to the statements it generates in
the output assembly language file.

WARNING: Do not use the –MO option with the –BS option. This will cause a conflict.

 For example:

WDC02CC -AT -BS MYFILE.C

This command compiles the file MYFILE.C and places the assembly language output into a file called
MYFILE.ASM. This file has the C statements embedded as comments and additional statements that
specify line number and source level debugging information.

-D

 W65C02S C Compiler/Optimizer

21

This option defines a symbol in the same way as the preprocessor directive, #define. Its usage

is as follows:

-DMACRO[=TEXT]

For example,

-D MAXLEN=1000
is equivalent to inserting the following line at the beginning of the program:

#define MAXLEN 1000

The separating space following the -D is optional. The following formats are equivalent:

-D MAXLEN=1000
-DMAXLEN=1000

Since option -D causes a symbol to be defined for the preprocessor, it can be used in conjunction with the
preprocessor directive, #ifdef, to selectively include code in a compilation. A common example is code
such as the following:

#ifdef DEBUG
printf("value: %d\n", i);

#endif

This debugging code would be included in the compiled source by the following command:

WDC02CC -DDEBUG PROGRAM.C

When no substitution text is specified, the symbol is defined as the numerical value one.

-HI

This option specifies the name of an input file containing pre-compiled header file information. The input
file is created using the -HO option. For example:

-HI MYPROG.DMP.

-HO

This option specifies the name of an output file for pre-compiled header information. This information is
later used with the -HI option to compile programs that use the same header files over and over again.
The use of pre-compiled header files can significantly shorten compile times. Only one pre-compiled
header file may be used per compilation, but it may contain information from numerous header files. For
example, if the C source files for a program included the header files STDIO.H, STDLIB.H and
STRING.H, you could speed up compilations by pre-compiling these files. To do that, create a dummy
file named X.C that contained the following lines:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

 W65C02S C Compiler/Optimizer

22

Create the pre-compiled header file X.DMP using the following command line:

WDC02CC -HO X.DMP X.C

Then, when compiling a source file that includes these header files you can use a command like:

WDC02CC -HI X.DMP MYPROG.C

When the compiler encounters a #include that references one of the files in the pre-compiled header file,
it just skips it.

-I

Compiler option -I defines a single directory to be searched for the file that was specified in a #include
statement. The path descriptor follows option -I. A space between -I and the path descriptor is allowed
but not required.
 The command

WDC02CC -I C:\OTHER\INCLUDE

directs the compiler to search the c: + + other + + include area when looking for an include file. Multiple -I
options can be specified when starting the compiler, if desired, thus defining multiple directories to be
searched. You can also specify where include files are kept using the WDC _INC _6502 environment
variable.

-L

This option creates a listing from the compiler output to be passed to the assembler output. The ‘C’
source code statements are added as comments to the assembly code listing.

-LT

This option is used to generate a listing that contains embedded source statements.

-LW

This option modifies the –L option to set the listing to a wide format of 132 columns. This option is the
same as the PW 132 option in the assembler.

-MO

This option causes the compiler to generate a module header and ending for each function and global
variable in the source file. This allows each function to be loaded separately from a library of functions.
This option is usually only used when compiling source files for inclusion in a library.

WARNING: Do not use the –BS option with the –MO option. This will cause a conflict.

-MU

This option forces initialized data declared using the const keyword to be placed in the compiler's CONST
section which defaults to KDATA. See the discussion of CONSTS AND STRINGS in CHAPTER 3 for
more details and an example.

-MV

 W65C02S C Compiler/Optimizer

23

This option forces string data to be placed in the compiler's STRING section which defaults to KDATA.
See the discussion of CONSTS AND STRINGS in CHAPTER 3 for more details and an example.

-O

This option is used to override the default output filename. The separating space between the option –O
and the filename is optional. A detailed discussion of compiler output files appears in CHAPTER 1.

-PA

This switch is used to turn on all the ANSI checking and turn off any special extensions. A program which
compiles with the -PA flag should compile with any other ANSI standard C compiler.

-PB

This option causes bit fields to be treated as unsigned. The default is signed. For example,

int pFlags : 3;

by default defines a bit field whose value ranges from -4 to +3. If the -PB option is specified, the range is
from 0 to 7.

-PC

This option allows extra characters to occur on the line following the pre-processor directives #else and
#endif. This option is provided for compatibility with pre-ANSI compilers.

-PE

By default the size of enums is the same as that of an int. This option places them in the smallest space
that will contain them. For example, the definition:

enum colors { blue, red, yellow, white};

would use a single byte to represent enums of this type if the -PE option was used. The definition:

enum countries { USA, England, France=500, Germany};

would use a two byte word to represent enums of this type when using the -PE option.

-PP

The 65C02 does not have an instruction which will sign extend an eight bit quantity to a sixteen bit one.
Thus, unsigned character operations are much more efficient than signed character operations. The
WDC C compiler chooses to treat char directives as specifying unsigned char quantities. The signed char
directive may be used to declare characters that can be positive or negative. The -PP option changes the
default char declaration to be signed char.

-PT

 W65C02S C Compiler/Optimizer

24

Trigraphs are an attempt by the ANSI committee to support foreign keyboards and printers. Certain
characters are represented as two question marks followed by another character which indicates the true
character intended. For example, ??= is equivalent to # and ??(is equivalent to [. In most instances, this
simply slows down the parser, but it must be supported for ANSI compliance. The option -PA turns on
trigraph checking, but this option is included to turn off trigraphs while retaining the rest of the ANSI
compliance.

-PX

This option allows C++ style single line comments. When this option has been turned on, when the
compiler pre-processor sees `//', it treats the two slash characters and the rest of the line as a comment.

-QA

This option controls how prototypes are generated by the –QP and -QS options. If -QA is specified, then
a typical prototype is generated as:

int func _PARMS((int x, int y));

instead of the default:

int func(int x, int y);

The first form is used for maximum portability to pre-ANSI compilers. The following sequence is usually
placed at the beginning of the header file containing the portable style prototypes:

#if __STDC__
#define _PARMS(x) x
#else
#define _PARMS(x) ()
#endif

Then, if _ _STDC _ _ is defined, the macro will change the first prototype to:

int func (int x, int y);

Otherwise, if it not defined, the prototype becomes:

int func ();

which is the standard declaration of an external function defining the type returned by the function.

-QP

This option tells the compiler to generate a file with the extension .PRO that contains prototypes for all the
non-static functions found in the current source file. The file is not compiled.

-QQ

This option prevents the compiler from displaying the startup message and the number of errors.

-QS

 W65C02S C Compiler/Optimizer

25

This option is similar to the -QP option except that it causes the compiler to generate prototypes for static
functions.

-QV

This option causes the compiler to display information on memory usage.

-SF

This option causes the compiler to generate more efficient for loops. This is an option since the less
efficient loops are easier for source level debugging.

-SM

This option defines the macro _ _C _MACROS _ _ . Some header files use this macro to redefine
functions as macros that removes the function call overhead in favor of in-line code. See
Wdc_Sds\Include\ctype.h and Wdc_Sds\Include\stdio.h.

-SO

This option is the general purpose optimization option that is the same as specifying -SFMR.

-SP

This options causes the post-pass peephole optimizer, WDC02OPT, to be invoked on the assembly
language output of the compiler. If the -A option has not been specified, then WDC02OPT will invoke the
assembler, WDC02AS on it's output.

-SR

This option instructs the compiler to automatically allocate register variables. These register variables are
pseudo-registers located in zero-page. The compiler allocates registers to local variables based on how
often they are used, with extra weight given to pointers. Without this option, the compiler will honor any
register declarations on a first come first served basis.

 -SX

This option enables factorizing in the Optimizer. Factorization is done on a single source file. The –SP
option MUST also be specified for factorization to take place. Please see Chapter 3, Technical Notes, for
more information on factorizing,

-WA

Normally, if you call a function in the presence of a prototype, and the type of a function parameter does
not match the type specified in the prototype, the type is coerced as if by assignment. Thus if you pass
an int to a function expecting a long, the int is quietly cast to a long. This option causes the compiler to
generate a warning if a quiet cast is generated. This is useful, since it allows you to change the code to
an explicit cast that is portable to pre-ANSI compilers.

-WD

 W65C02S C Compiler/Optimizer

26

This option generates a warning if a function is defined using the old pre-ANSI style definition of the form:

int function(a,b)
int a, b;
{ }

instead of:

int function(int a, int b)
{ }

This is a useful tool for ``ANSI-izing'' your programs.

-WE

Normally warnings and errors generated by the program are displayed on the screen of the computer. If
errors occur, the compiler stops without producing an object file. If only warnings occur, an object file is
produced. This option converts all warnings into errors.

-WL (Currently not available)

This option is a short-hand way of specifying the -WA, -WR and -WU options. It is used to force the
compiler to do maximum type checking.

-WN

This option suppresses warning messages for direct pointer to pointer conversions which do not contain
an explicit cast, such as the following code fragment:

int *iptr;
char *cptr;

cptr = iptr;

Because the ANSI standard defines that such direct conversions are illegal, the -PA (full ANSI) option will
always generate an error for the above code. To eliminate the error when -PA is specified, the above
could be changed to:

cptr = (char *)iptr;

-WO

Under ANSI C, pointer-integer conversions are illegal, and are usually a problem when 16 bit ints are
used. This option changes pointer-integer conversion errors into warnings, and has been included for
compatibility with non-ANSI compliant compilers.

-WP

This is useful for determining if a header file is not being included. For example, if you use the strlen()
function without including the file string.h, then -WP will generate a warning.

-WQ

 W65C02S C Compiler/Optimizer

27

By default the compiler displays error messages on the screen. This option sends them in an abbreviated
form to the file WDC.ERR.

-WR

Normally, a function is declared without a type, which implies that it returns an int. However, if there are
any return statements, explicit or implicit, that do not return a value or that return a value whose type
disagrees with the type of the function, then a warning is generated for the return statements. Thus, the
function:

foo()
{

printf("hello world\n");
}

would generate a warning since it should have been defined:

void foo ()

since there is no value returned. The warning would be on the } which is an implicit return statement.

-WS

This option causes all warning messages to be suppressed.

-WU

Since the compiler has the entire tree of the function in memory, it can detect that a variable has been
declared but has not been used. This option directs the compiler to check for such variables and
generate a warning for each that is not used. For example, the function:

void foo()
{

int j;

printf("hello world!\n");
}

would generate a warning that j is not used in the function.

-WW

Normally, the compiler will pause after encountering five errors and ask if compilation should continue.
This option indicates that the compiler should not pause and should continue to the end of compilation.

 W65C02S C Compiler/Optimizer

28

CHAPTER 3 Technical Notes

This section contains information about the implementation of the compiler for the W65C02S processor.

Pseudo-Registers

The 65C02 has very limited resources for generating code from a compiled language like C. To facilitate
the code generation and to generate programs that are as small as possible, the code generated by the
compiler uses a set of zero-page memory locations as a set of pseudo-registers. These registers
implement full 16 bit stack and frame pointers, compiler temporary registers, floating point registers and
user-defined register variables. The use of user-defined register variables in particular can greatly reduce
the size and increase the speed of program execution. The primary cost for these pseudo-registers
occurs when a function is called and when a function returns. When a function is called, the arguments
are pushed onto the machine stack and a JSR is executed to the function start address. At the function
start address is a JSR to the csav routine followed by four bytes of data. The csav routine is an assembly
language routine that performs a number of function startup actions. First, it uses the in-line data, to
determine the number of arguments on the stack, the amount of stack space to allocate for automatic
storage and the amount of user register space used within this function. Second, it adjusts the pseudo-
stack pointer and saves the old pseudo-stack pointer, the old frame pointers and the return address on
the pseudo-stack. Third, it copies the arguments from the machine stack to the pseudo-stack. Fourth, it
saves any user-registers that will be used by the function. Finally, it pushes the address of the cret
routine onto the machine stack and jumps to the address after the in-line data. All code generated by the
compiler makes use of the pseudo-frame pointers to access automatic variables and arguments passed
to the function. The code also uses and zero-page user register variables allocated.

NOTE: Because of the interdependence between the compiler support library functions, the code
generated by the compiler and the debugger, the locations used for pseudo-registers must be consistent.
To guarantee this consistency, any changes made to zero-page pseudo-register allocation must be made
to both the WDC_SDS\INCLUDE\ZPAGE.INC and WDC_SDS\BIN\WDC02CC.CFG files and the libraries
must be rebuilt.

Pseudo-Stack Frame

The pseudo-stack frame created by the csav routine has the following structure:

* copy of args *
* from machine *
* stack *
* (N bytes) *

* # of bytes of *
* user registers *
* (see below) *
* (1 byte) *

* local frame ptr *
* (2 bytes) *

 W65C02S C Compiler/Optimizer

29

* args frame ptr *
* (2 bytes) *

* stack pointer *
* (2 bytes) *

* return address *
* (2 bytes) *

* any saved user *
* registers *
* (N bytes) *
* (see above) *

* local variables *
* allocated on *
* pseudo-stack *
* (N bytes) *

Function Calls and Argument Passing

When a function is called with arguments, there are two different methods that can be used to restore the
stack to its original condition. The more traditional C method is to have the calling function pop the
arguments after the function call returns. A more efficient method is to have the function that is called
pop the arguments before returning. This method is more efficient since the code to pop arguments
occurs once, instead of each place that the function is called. There are two drawbacks to this approach.
First, if a variable number of arguments are passed (printf() for example), there is no way for the called
function to know how many arguments to pop since it may vary from call to call. Second, if the wrong
number of arguments is passed, the stack pointer becomes inconsistent which almost always results in a
program error. Both of these problems are completely avoided by the use of function prototypes. If a
function prototype declares a function to have a variable number of arguments, the compiler automatically
loads the accumulator with the number of bytes of arguments to pop off the stack. The function itself
must be declared with a variable number of arguments so that it knows to use extra data when popping
arguments. The use of prototypes also avoids the second problem by always guaranteeing that the
correct number and types of parameters are passed.

 W65C02S C Compiler/Optimizer

30

Function Arguments

When calling a function the arguments are pushed onto the stack in reverse order, starting with the last
argument. The last argument pushed is the first one listed in the function call. For example, when calling
a function with two in arguments, the following shows the C version of the function call and the assembly
language generated:

; func(a, b);

LDA b+1
PHA
LDA b
PHA
LDA a+1
PHA
LDA a
PHA
JSR _func

If there are a variable number of arguments, after the last argument is pushed, the total number of
argument bytes is loaded into the Accumulator. For example:

; func(a, b);

LDA b+1
PHA
LDA b
PHA
LDA a+1
PHA
LDA a
PHA
lda #4
JSR _func

Function Return Value

Functions called by a C function and C functions themselves return values in the R0 pseudo-register as
defined in the ZPAGE.INC header file. Floating point return values are returned in FP0.

Startup Code

In the WDC_SDS\LIBSRC\S65C02 directory, there is an example assembly language startup file called
STARTUP.ASM. This file is designed to be customized for the particular program being designed. It
contains a set of interrupt and reset vectors, initialization code sets the machine stack pointer and the
pseudo-stack pointer, copies any initialized data from ROM to RAM, clears any uninitialized data to zero
and calls the main() routine. A detailed description of a similar routine called STARTUP.ASM can be
found in the Assembly Language Development Manual.

 W65C02S C Compiler/Optimizer

31

Identifier Name Prefixes

The compiler automatically generates a prefix for all global symbols. This prefix is in the form of a leading
underscore for all global symbols. By convention, library functions that are used directly by the compiler
begin with a tilde character.

Memory Management

The 65C02 memory is organized as a single 64K bank which may need to be broken into sections to
accommodate holes in the memory map. The problem with breaking a program and its data into sections
is that there needs to be a way to indicate which functions and data are placed in which section.
Currently, the compiler generates three sections, CODE, DATA, and UDATA, for program code, initialized
data and uninitialized data. An additional section, KDATA, is generated for constant data and/or string
data if the appropriate option is specified. Using #pragmas or compiler options, these can be changed to
any section name desired. Then the location of the section in memory can be specified at link time or
within the pragma or option itself. This provides total control over the location of each function and data
item in memory.

 W65C02S C Compiler/Optimizer

32

CAVEATS

Floating Point Considerations

All operations are assumed to be “double”.

The compare, subtraction, multiplication, etc. are treated as “double” operations. The constants are
converted to “doubles”. If you follow the constants with an f, as in 0.0f, it will do a single precision
compare or subtract. If the constant is a double, (which it is by default), then the operations used are
promoted to double as well.

Manual optimization of double to float can be accomplished.
The “f” modifier can be used to generate faster and perhaps smaller code.
Be especially watchful for compound equivalencies, i.e. +=, -=, etc…

Example #1: (where x is a float)
if (x<0.0) can also be written as: if (x<0.0f) or if (x< (float)0.0)
The addition of the “f” forces the compiler to stay in floating point mode.

The transcendental functions can also be rewritten to stay mostly in floating point, so as to be about three
(3) times faster.

Example #2:
X += 0.1234567; should be written as x+= 0.1234567f;

Section Pragma

The SECTION pragma is used to redefine one of the names of the predefined sections used by the
compiler. The default section names and their use are:

CODE - all program code
DATA - all initialized data
UDATA - all uninitialized data
KDATA - all initialized, non-modifiable data

By default, the compiler only uses the first three. Constant initialized data is treated as modifiable
initialized data unless the -MU option has been specified. This option places all initialized data that has
been qualified as not being modifiable in the CONST section which defaults to KDATA. Strings are
handled separately and by default are placed in the DATA section. If the -MV option is specified, then
strings are placed in the STRING section which also defaults to the KDATA section. The syntax of the
SECTION pragma is:

#pragma SECTION TYPE=name[,qualifier[,...]]

The type names recognized by the pragma and their default values are:

TYPE DEFAULT QUALIFIER
CODE CODE OFFSET
DATA DATA REF_ONLY
UDATA UDATA
CONST DATA unless `-MU' then KDATA
STRING DATA unless `-MV' then KDATA

 W65C02S C Compiler/Optimizer

33

The qualifiers are the same as those for the SECTION directive in the assembler. The compiler will
generate a SECTION directive the first time that a new section name is defined. Any extra qualifiers will
be copied exactly to the SECTION directive in the assembly language output file. See the SECTION
directive in the Assembly Language manual for more information.

Consts and Strings

Two options are available for manipulating constant data and strings. Constant data is any initialized data
declared using the const keyword. Normally both are just considered part of initialized data and are not
handled any differently. By using the -MU option, constant data will be placed in what the compiler
considers the CONST section. This section defaults to the KDATA section at the assembly level. To
change the CONST section, use the section #pragma statement.

#pragma section CONST=yournamehere

Similarly, using the -MV compiler option will place strings in the compiler STRING section. This section
also defaults to KDATA.

In-Line Assembly Code

Assembly language statements can be embedded within C source code by surrounding the assembly
code with the statements #asm and #endasm. Embedded assembler code should make no assumptions
about the contents of the registers.

 For example,

#define NUM 3

void
test(void)
{
#asm

lda #%%NUM
sta $c0

#endasm
}

Since #asm and #endasm are pre-processor directives, the lines between would normally be considered
white space by the compiler. To avoid this, a null statement is generated for the parser. Support is also
provided to access predefined macros, file scope static identifiers, and global variables. To access these
from within a #asm block, precede the identifier name with %%. When passing output to the assembly
language file, the compiler checks for the pattern % %symbol. When found, it checks to see if symbol
matches any pre-defined macros and replaces it with the actual macro value. If a macro is not found, it
next checks for variable name matches following the standard C scoping rules. If found, the proper
variable name is substituted. For global variables, the appropriate `_' character is prepended to the
global symbol name.

The following directives can be used before and after in-line assembly statements:

asmstart and asmend

The Optimizer will treat any lines that are in between these two directives as comments.

 W65C02S C Compiler/Optimizer

34

ASM Keyword

The compiler now supports an asm keyword. The statement following the keyword is passed to the
output file directly and is not interpreted by the compiler except for macro substitution. The statement
must be terminated by a `;'. Multiple statements, each terminated by a `;' may be enclosed within braces.
Variables may be referenced by name using the `%%' convention discussed under the #asm
preprocessor directive. Labels must be followed by a colon.

Example

#define VALUE 20
#define COUNT 100

void test(void)
{

 asm cli;

 asm { lda #%%VALUE; ldx #%%COUNT;

 mylab: sta >$1000,X; dex; bne mylab; }

#define clrmem asm { lda #%%VALUE; ldx #%%COUNT; \
loop: sta >$1000,X; dex; bne loop; }

 clrmem;
}

Other Preprocessor Features

 Predefined Names

_ _ DATE_ _ A string literal containing the date of compilation, in the form of “Mmm:dd:yyyy”.
_ _TIME_ _ A string literal containing the time of compilation, in the form of “hh:mm:ss”.
_ _STDC_ _ The constant 1. It is intended that this identifer be defined to be 1 only in standard-
conforming implementations.

 #line

The #line directive changes the contents of _ _LINE_ _ and _ _ FILE_ _, which are predefined identifiers
in the compiler. The _ _LINE_ _ identifier contains the line number of the currently compiled line code.
The _ _FILE_ _ identifier is a string that contains the name of the source being compiled. The general
form for #line is

#line number “filename”

where number is any positive integer and becomes the new value of _ _LINE_ _, and the optional
filename is any valid file identifier, which becomes the new value of the _ _FILE_ _. #line is primarily used
for debugging and special applications.

 W65C02S C Compiler/Optimizer

35

Producing Optimum Code

There are many things that can greatly improve the quality of the code generated by the compiler. The
most important is to use unsigned ints and chars whenever possible. Signed chars and ints require many
more instructions when sign extending or comparing. As a result chars are unsigned by default and you
must use the `signed' keyword to get signed chars.

Optimizer

This version of the compiler comes with a post-pass-peephole optimizer called WDC02OPT. This
optimizer operates on the assembly language output of the compiler and performs a number of
optimizations that generally save about 10 percent on code size depending on the program. To invoke
the optimizer, use the -SP option. If -SP is used in conjunction with -A, the output file will contain the
optimized assembly language. Note that the optimizer makes assumptions about the format of the
assembly language output of the compiler and will not operate properly on hand-written assembly
language programs.

The following optimizer options support the corresponding compiler options:
 -L Call the assembler with the listing option
 -LW Call the assembler with the wide listing option.
 -K Causes the path name specifying the name of the listing file to be placed in the reserved word
__FILE__.

Floating Point

The compiler supports IEEE single and double precision floating point variables and arithmetic. No option
is necessary to access the floating point feature. All floating point operations with the exception of
assignment are performed by assembly language routines using two pseudo-registers located in zero-
page. These assembly language routines are located in a special floating point library along with the
standard mathematical library routines. Please see the library CHAPTER for the names and linking
conventions. The floating point library also contains versions of printf and scanf that work with floating
point values.

Referencing I/O

Hardware addressing of I/O can be done from 'C' in many ways. The following examples we compiled as
the Small Memory Model.

The #define has advantages that it can easily address across page boundaries.
One of the fastest & least amount of code generated is:

For 8 bit I/O you can use
#define comx ((volatile uchar *)0x200003) // used for indexed addressing
 x = *comx;
This produces the code:
 sep #$20
 lda >2097155 ;This is a long addressing mode (32 bit)
 sta <L3+x_1
 rep #$20

To index
comx[2] = 0x02;

 W65C02S C Compiler/Optimizer

36

This produces the code:
 longa off
 sep #$20
 lda #$2
 sta >2097157

comx[0] = 0x31; //Xmit char '1'
This produces the code:
 lda #$31
 sta >2097155
 longa on
 rep #$20

Therefore to address a structure for a UART, one way could be to:
#define comx ((volatile uchar *)0x200003) // used for indexed addressing
#define RECV 0
#define IER 1 //Interrupt Enable Register
#define ISR 2 //Interrupt Status Register
#define LCR 3 //Line Control Register
#define MCR 4 //Modem Control Register
#define LSR 5 //Line Status Register
#define MSR 6 //Modem Status Register
#define SPR 7 //Scratchpad Register

to address the Scratchpad Register would be:
 comx[SPR] = 0x00;

Standard Addressing modes for 'C' product larges & slower code because all references are indirect (i.e.
pointers)

For 8 bit I/O you can use
volatile unsigned char *rtc2_year = (unsigned char *)0xA080; //
 x=*rtc2_year; //Read data from Address
This produces the code:
 lda |__rtc2_year
 sta <R0
 sep #$20
 lda (<R0)
 sta <L3+x_1
 rep #$20

For 16 bit I/O you can use
volatile int *hw16_multiplier = (int *)0xA080; //
 *hw16_multiplier = y;
This produces the code:
 lda |__hw16_multiplier
 sta <R0
 lda <L3+y_1
 sta (<R0)

For 32 bit I/O you can use
volatile long *hw32_multiplier = (long *)0xA080; //
 *hw32_multiplier = z;
This produces the code:

 W65C02S C Compiler/Optimizer

37

 lda |__hw32_multiplier
 sta <R0
 lda <L3+z_1
 sta (<R0)
 lda <L3+z_1+2
 ldy #$2

Another example of referencing I/O using the pre-processor:

#define VIA_BASE F0H
#define IO_VIA_DDRBNH (VIA_BASE+2)
#define io_and_port2(port, mask, twenty) asm{ php; longa off; sep twenty; lda port; and mask; sta port;
plp;}
io_and_port2(IO_VIA_DDRBNH, #$72, #$20)

Prototyping Functions

The W65C816 C Compiler supports the new definitions of declaring parameters. If the old style
declaration is used, an error will occur. For Example;

OLD STYLE:
//Prototype
VOID foo (float f);
.
.
VOID foo (f)
float f;
{
.
}
The above will produce an error and needs to be replaced by the newer style, as shown below.

//Prototype
VOID foo (float f);
.
.
VOID foo (float f)
{
.
}

Variable Name Length

The maximum number of characters used in a variable name is 64 characters. After the first 64
characters, the internal variable name is truncated.

Debugging

The linker does not generate any information of static variables declared inside a function. This is
because a static variable defined may be declared in more than one function. Thus, the compiler simply
generates an internal label for it and allocates space for it.

 W65C02S C Compiler/Optimizer

38

Assembling Compiler Output Considerations

DO NOT use the –g option when assembling the output from the compiler. The –g option is only to be
used when you want debug information from an assembly language file. Using the –g option to assemble
the output from the compiler will cause an error in the symbol file.

The following example will generate an error in the generated symbol file:

WDC816CC.EXE –at –ms –mu –mv –bs –sop –wl –wr –wd
WDC816AS.EXE –g –l –DDEBUG

Volatile Qualifiers

Please note that local variables CANNOT be declared as volatile inside a function body. To declare a
variable as volatile inside a function body, it must be static. This is a limitation of the compiler.

Declaring a variable as volatile OUTSIDE a function body, (global scope):
volatile unsigned char char_volatile;

Declaring a variable as volatile INSIDE a function body, (static local variable);
static volatile unsigned char char_volatile

The following WILL NOT work when declared INSIDE a function body, (local variable):
volatile unsigned char char_volatile

Path size Limitation

The maximum allowable length of the path that follows the command WDC02CC is 256 characters.

Global Function and Variable Definition

The C standard states that you cannot have a global variable and a function declared with the same
name. If you do this, you will get the following error: Error 90: Symbol redeclared. The following is invalid
code:
Unsigned char error;
Void error()
{
}

 W65C02S C Compiler/Optimizer

39

Factorization of Source Code

When factorization is used, the Optimizer looks for repeated patterns in the compiler output. These
patterns are replaced by a call to a subroutine, thus reducing the overall code size. It should be noted that
while factorization may reduce the code size, cycle count may increase. Therefore it is up to the
developer to decide which is more important for their application, speed or code size, and enable the
factorization accordingly.

To enable factorization, you must include the following options on the command line: -SX AND –SP.

For example: WDC02CC –lt –bs –ms –sp –sx filename.c

will enable factorization on the compiler output of the source filename.c. It may be desirable to enable all
optimizations for the source, thus you can specify –SOPX on the command line. Please see Chapter 2,
Option Descriptions, for more information on the compiler options.

 W65C02S C Compiler/Optimizer

40

CHAPTER 4 Libraries

This CHAPTER describes the standard library functions provided with the WDC 65C02 C Development
System.

Library Names

There are two main libraries provided with the WDC 65C02 C Development System. The C.LIB contains
all the standard C functions and some special functions need by compiler generated code for operations
like multiply and divide. The M.LIB contains the standard floating point math functions and floating point
emulation routines. If the WDC _LIB environment variable has been set to point to the directory
containing the library files, then the -L option can be used to access the libraries when linking. For
example, the command:

WDCLN PROG.OBJ -LC

will look for functions in the library C.LIB. When linking with the floating point library, be sure to specify it
before the standard library in the linker command line. This will insure that the proper version of printf
and scanf are used. If floating point numbers do not print out at all, check to see if the libraries are in the
proper order.

 Example:

WDCLN PROG.OBJ -LM -LC

will look for functions in the libraries M.LIB and C.LIB.

NOTE: If the floating point library is not needed, do not link it as this will result in larger code size!

ANSI Functions

For a list of the standard ANSI functions, in the form of function prototypes, that are supported by the
W65cSDS, please refer to Appendix A.

Heap Functions

The ANSI standard library includes functions for allocating, freeing and reallocating memory from a
memory heap. The WDC C Development System supports a heap built on top of the sbrk() function.
This function allocates memory from a heap area that is specified by the programmer. The beginning of
the heap is specified by declaring and initializing the two variables, heap _start and heap _end. The
sbrk() function begins by allocating memory starting at heap _start and will continue to allocate until heap
_end is reached.

 For example:

void *heap_start = (void *)0xa000, *heap_end = (void *)0xd000;

This example allocates 0x3000 bytes of space starting at 0xa000. The ANSI functions that use the heap
are malloc, calloc, realloc, and free. The sbrk function is not an ANSI function.

To have the heap start at the end of the “Unitialized Data” area, use the following statements:

extern char _END_UDATA:
void *heap_start = (void *)&_END_UDATA, *heap_end = (void *)(&_END_UDATA + nnn);

 W65C02S C Compiler/Optimizer

41

APPENDIX A WDC Supported C Functions

The following is a list of the standard ANSI functions in the form of function prototypes. These functions
are listed by the header file in which they are defined.

Assert.h
 assert - Debugging macro
void _assert(char *, char *, unsigned int);

Ctype.h
Character tests and conversions, some are also macros

 int isalnum(int _c); - test for letter or digit
 int isalpha(int _c); - test for alphabetic
 int isascii(int _c); - test for < 0x80
 int iscntrl(int _c); - test for control character
 int isdigit(int _c); - test for digit
 int isgraph(int _c); - test for non-printable chars
 int islower(int _c); - test for lower case letter
 int isprint(int _c); - test for printable chars
 int ispunct(int _c); - test for punctuation character
 int isspace(int _c); - test for space (0x09 to 0x0d or 0x20)
 int isupper(int _c); - test for upper case letter
 int isxdigit(int _c); - test for hex digit (0..9 or a..f or A..F)
 int toupper(int _c); - convert to upper case (if a letter)
 int tolower(int _c); - convert to upper case (if a letter)
 int toascii(int _c); - convert to ascii (remove sign)

Errno.h
Error code definitions and table returned by the errno() function.

 extern char *sys_errlist[]; - pointer to system standard error list
 extern int sys_nerr; - variable of system standard errors

Fcntl.h Low Level I/O
int creat(const char *_name, int _mode);
int open(const char * _name, int _mode);
int close(int);
size_t read(int, void *, size_t);
size_t write(int, void *, size_t);
long lseek(int, long, int);
int unlink(const char *);
void _exit(int _code);
void _abort(void);

Float.h
Floating point definitions for values of constants. (Ranges of max/min & standard floating point values for
math symbols.)

Io.h
Not Defined by WDC.

 W65C02S C Compiler/Optimizer

42

Limits.h
Limits that apply to variable “types”. i.e. unsigned short variable value range.

Locale.h
How Time,Date and Currency are formatted in other countries

Setlocale - selects the appropriate programs locale LC_ALL, etc.
char *setlocale(int _category, const char *_locale);

NON-ANSI
struct lconv *localeconv(void); - sets the components of an object with type struct lconv with values
appropriate for the formatting of numeric quantities (monetary and otherwise) according to the rules of the
current locale.

Math.h
Math Functions

 double acos(double); - inverse cosine
 double asin(double); - inverse sine
 double atan2(double, double); - inverse tangent of y/x
 double atan(double); - inverse tangent
 double atof(const char *); - ASCII to binary Floating point equivalent
 double ceil(double); - smallest integer >= argument (as double)
 double cos(double); - cosine
 double cosh(double); - hyperbolic cosine
 double cotan(double); - cotangent
 double exp(double); - exponential
 double fabs(double); - double floating point to absolute (Assembly Language)
 double floor(double); - largest integer <= argument
 double fmod(double, double); - floating modulus
 double frexp(double, int *); - returns mantissa of floating point number as a normalized fraction in the
range [0.5,1.0] (Assembly Language)
 double ldexp(double, int); - calculates X times 2 raised to the exp power
 double log10(double); - base ten logarithm
 double log(double); - natural logarithm
 double modf(double, double *); - return integer and fractional parts of number
 double pow(double, double); - x raised to the power of y
 power - See pow. (These are equated, therefore they are interchangeable)
 double sin(double); - sine
 double sinh(double); - hyperbolic sine
 double sqrt(double); - square root
 double tan(double); - tangent
 double tanh(double); - hyperbolic tangent

NON-ANSI
 double ran(void); - REAL pseudo-random number generation uniformly distributed on (0.0 to 1.0) [This
program was written by W. J. Cody, Jr., as part of the ELEFUNT test package.]
 double randl(double); - REAL pseudo-random number logarithmically distributed on (1,exp(x)). [This
program was written by W. J. Cody, Jr., as part of the ELEFUNT test package.]
 void sran(long); - seed for ran and randl

 W65C02S C Compiler/Optimizer

43

Setjmp.h (Not Yet Implemented)
Jump functions

 int setjmp(jmp_buf _env); - save context
 void longjmp(jmp_buf _env, int _val); - jump to location saved in setjmp

Signal.h (Not Yet Implemented)
Defines the conditions for error traps.

 void (*signal(int _sig, void (*_func)(int)))(int); - make function a signal handler
 int raise(int _sig); - generate signal

 Stdarg.h
Defines for using variable number of arguments for functions

va_arg(char *ap,type) where type is int,char,long,float,etc… - Variable number of Arguments
va_end(char *ap) - Variable number of Arguments End
va_start(char *ap, char *parmN) - Variable number of Arguments Start of Definitions

Stddef.h
Many common constants, identifiers, typedefs, and variables.

Stdio.h
Higher level I/O Functions.

 void clearerr(FILE *_stream); - reset error conditions on a file
 int fclose(FILE *_stream); - close a file (file pointer)
 int feof(FILE *_stream); - check for end of file (file pointer)
 int ferror(FILE *_stream); - return error status for a file
 int fflush(FILE *_stream); - write file buffers to a file
 int fgetc(FILE *_stream); - read a single character from a file
 int fgetpos(FILE *_stream, fpos_t *_pos); - return current file position
 char *fgets(char *_s, int _n, FILE *_stream); - read string from selected file
 FILE *fopen(const char *_filename, const char *_mode); - open a file
 int fprintf(FILE *_stream, const char *_format, ...); - write a formatted line to a file
 int fputc(int _c, FILE *_stream); - write a single character to a file
 int fputs(const char *_s, FILE *_stream); - write string to selected file
 size_t fread(void *_ptr, size_t _size, size_t _nmemb, FILE *_stream); - read from file using file pointer
 FILE *freopen(const char *_filename, const char *_mode, FILE *_stream); - reopen a file
 int fscanf(FILE *_stream, const char *_format, ...); - get a formatted line from a file
 int fseek(FILE *_stream, long int _offset, int _whence); - seek to position using file pointer
 int fsetpos(FILE *_stream, const fpos_t *_pos); - position file to a location previously returned by fgetpos
 long int ftell(FILE *_stream); - return current file position
 size_t fwrite(const void *_ptr, size_t _size, size_t _nmemb, FILE *_stream); - write to a file with item size
& item count
 int getc(FILE *_stream); - get character from a file
 int getchar(void); - get character from stdin (also a macro in stdio.h)
 char *gets(char *_s); - read string from stdin
 void perror(const char *_s); - maps the error number in the integer expression errno to an error
message
 int printf(const char *_format, ...); - write a formatted line to a stream
 int putc(int _c, FILE *_stream); - write a character to a file

 W65C02S C Compiler/Optimizer

44

 int putchar(int _c); - write a character to stdout (also a macro in stdio.h)
 int puts(const char *_s); - write string to stdin
 int remove(const char *_filename); - causes the file whose name is the string pointed to by filename to
be no longer accessible by that name
 int rename(const char *_old, const char *_new); - causes the file whose name is the string pointed to by
old to be henceforth known by the name given by the string pointed to by new
 void rewind(FILE *_stream); - position a file to the beginning
 int scanf(const char *_format, ...); - get a formatted line from a stream
 void setbuf(FILE *_stream, char *_buf); - set the address of the buffer for a file
 int setvbuf(FILE *_stream, char *_buf, int _mode, size_t _size); - set the address and size of the buffer
for a file
 int sprintf(char *_s, const char *_format, ...); - equivalent to fprintf, except that the arguments specifies
an array into which the generated output is to be written
 int sscanf(const char *_s, const char *_format, ...); - equivalent to fscanf, except that the argument
specifies a string from which the input is to be obtained, rather than from a stream
 FILE *tmpfile(void); - creates a temporary binary file that will automatically be removed when it is closed
or at program termination
 char *tmpnam(char *_s); generates a string that is a valid file name and is not the same as the name of
an existing file
 int ungetc(int _c, FILE *_stream); - reverse of getc
 int vfprintf(FILE *_stream, const char *_format, char *_arg); - equivalent to fprintf, with the variable
argument list replaced by arg, which has been initialized by the va_start macro
 int vprintf(const char *_format, char *_arg); - equivalent to fprintf, with the variable argument list
replaced by arg
 int vsprintf(char *_s, const char *_format, char *_arg); vsprintf - equivalent to sprintf, with the variable
argument list replaced by arg, which has been initialized by the va_start macro

NON-ANSI
 int _filbuf(FILE *); - internal function
 int _flsbuf(FILE *, int); - internal function flushes the specified stream

Stdlib.h
Commonly used Library Functions.

 void abort(void); - abnormal termination
 int abs(int _j); - absolute value of integer
 int atexit(void (*_func)(void)); - set function to call during exit
 double atof(const char *_nptr); - convert ascii to floating point
 int atoi(const char *_nptr); - convert a string to an integer
 long int atol(const char *_nptr); - convert a string to a long integer
 void *bsearch(const void *_key,const void *_base,size_t _nmemb,size_t _size,int (*_compar)(const void
*,const void *)); - performs a binary search on the elements of a sorted array in order to locate an element
that contains a specific value
 void *calloc(size_t _nmemb, size_t _size); - allocate with size, count
 div_t div(int _numer, int _denom); - Divide and return both quotient and remainder
 void exit(int _status); - normal exit & close files
 void free(void *_ptr); - causes the space pointed to by ptr to be deallocated, that is, made available for
further allocation
 void ftoa(double _val, char *_buf, int, int); - convert floating point to ascii
 long int labs(long int _j); - long absolute value
 ldiv_t ldiv(long int _numer, long int _denom); - long divide and return both quotient and remainder
 void *malloc(size_t _size); - allocate with block size

 W65C02S C Compiler/Optimizer

45

 int mblen(const char *_s, size_t _n); - determines the number of bytes comprising the multibyte
character pointed to by s
 size_t mbstowcs(wchar_t *_pwcs, const char *_s, size_t _n); - converts a sequence of multibyte
characters that begins in the initial shift state from the array pointed to by s into a sequence of
corresponding codes and stores not more than n codes into the array pointed to by pwcs
 int mbtowc(wchar_t *_pwc, const char *_s, size_t _n); - stores the code in the object pointed to by pwc
 void qsort(void *_base, size_t _nmemb, size_t _size, int (*_compar)(const void *, const void *)); - sorts
an array of nmemb objects, the initial member of which is pointed to by base
 int rand(void); - integer random numbers (0 – 32565)
 void *realloc(void *_ptr, size_t _size); - expand memory block
 void srand(unsigned int _seed); - seed integer random number generator
 long int strtol(const char *_nptr, char **_endptr, int _base); - convert a string to a long integer
 unsigned long int strtoul(const char *_nptr, char **_endptr, int _base); - convert a string to an unsigned
long integer
 double strtod(const char *_nptr, char **_endptr); - convert a string to a double
 int system(const char *_string); - passes the string pointed to by string to the host environment to be
executed by a "command processor" in an implementation- defined manner
 size_t wcstombs(char *_s, const wchar_t *_pwcs, size_t _n); - converts a sequence of codes that
correspond to multibyte characters from the array pointed to by pwcs into a sequence of multibyte
characters that begins in the initial shift state and stores these multibyte characters into the array pointed
to by s
 int wctomb(char *_s, wchar_t _wchar); - determines the number of bytes needed to represent the
multibyte character corresponding to the code whose value is wchar

NON-ANSI
 void far *farcalloc(unsigned long _nmemb, unsigned long _size); function allocates space for an array of
nmemb objects, each of whose size is size. The space is initialized to all bits zero
 void farfree(void far *_ptr); - space pointed to by ptr to be deallocated
 void far *farmalloc(unsigned long _size); - allocates space for an object whose size is specified by size
and whose value is indeterminate.
 void far *farrealloc(void far *_ptr, unsigned long _size); - changes the size of the object pointed to by ptr
to the size specified by size
 long double strtold(const char *_nptr, char **_endptr); - converts ASCII string to Long Double
representation

String.h
String conversion Functions and Memory Functions

 void *memchr(const void *_s, int _c, size_t _n); - search memory for character
 int memcmp(const void *_s1, const void *_s2, size_t _n); - compare memory
 void *memcpy(void *_dst, const void *_src, size_t _n); - copy memory, byte access, allows overlap
 void *memmove(void *_dst,const void *_src, size_t _n); - move memory, byte access, allows overlap
 void *memset(void *_s, int _c, size_t _n); - fill a block of memory with a character
 char *strcat(char *_dst, const char *_src); - string concatenate
 strchr - search string for character
 int strcmp(const char *_s1, const char *_s2); - compare strings
 char *strcpy(char *_dst, const char *_src); - copy string
 size_t strcspn(const char *_s1, const char *_s2); - search for character not in set
 char *strerror(int _errnum); - maps the error number in errnum to an error message string
 size_t strlen(const char *_s); - return length of a string
 char *strncat(char *_dst, const char *_src, size_t _n); - string concatenate, check for length limit
 char *strchr(const char *_s, int _c); - search string for last occurance of character
 int strncmp(const char *_s1, const char *_s2, size_t _n); - compare strings for limited length

 W65C02S C Compiler/Optimizer

46

 char *strncpy(char *_dst, const char *_src, size_t _n); - copy string, limited length
 char *strpbrk(const char *_s1, const char *_s2); - search for character in set
 char *strrchr(const char *_s, int _c); - locate the last occurrence of a character in a string
 size_t strspn(const char *_s1, const char *_s2); - search for character not in set
 char *strstr(const char *_s1, const char *_s2); - search for one string in another
 char *strtok(char *_s1, const char *_s2); - split string into tokens

NON-ANSI
 char *index(char *_s, int _c); - search string for character
 void *memccpy(void *_dst, const void *_src, int _c, size_t _n); - copy memory & stop on character
match
 char *rindex(char *_s, int _c); - search string for last occurance of character
 int strcoll(const char *_s1, const char *_s2); - string collation – See Locale
 char *strdup(char *_s); - make copy of a string in the heap
 size_t strxfrm(char *_s1, const char *_s2, size_t _n); - string transformation – See Locale
 void swapmem(void *_s1, void *_s2, size_t _n); - Swap the blocks of memory addressed by s1 and s2.

Time.h
Time and date conversion functions

 clock_t clock(void); - return execution time for current task
 time_t mktime(struct tm *_timeptr); - convert time as a structure to seconds
 time_t time(time_t *_timer); - get current time in seconds
 char *asctime(const struct tm *_timeptr); - convert binary time to a character string
 char *ctime(const time_t *_timer); - current time and date as a character string
 struct tm *gmtime(const time_t *_timer); - convert time in seconds to structure (Greenwich)
 struct tm *localtime(const time_t *_timer); - convert time in seconds to structure (local time zone)
 size_t strftime(char *_s, size_t _maxsize, const char *_format, const struct tm *_timeptr); - ascii
time/date according to format string
 double difftime(time_t _time1, time_t _time2); - difference between to times

Zardos.h
Zardos defines. (Compiler version, structures, and source level debug information.)

 Zpage.inc
Page Zero temporary memory allocation for Functions and Floating point variables for the W65c02 and
W65c134.

 W65C02S C Compiler/Optimizer

47

APPENDIX B Description of Compiler Error Messages

1: bad digit in octal constant

The only numerals permitted in the base 8 (octal) counting system are zero through seven. In order to
distinguish between octal, hexadecimal, and decimal constants, octal constants are preceded by a zero.
Any number beginning with a zero must not contain a digit greater than seven. Octal constants look like
this: 01, 027, 003. Hexadecimal constants begin with 0x (e.g., 0x1, 0xAA0, 0xFFF).

2: obsolete

Error codes interpreted as obsolete do not occur in the current version of the compiler. Some simply no
longer apply due to the increased adaptability of the compiler. Other error codes have been translated
into full messages sent directly to the screen.

3: unterminated string

All strings must begin and end with double quotes (“). This message indicates that a double quote has
remained unpaired.

4: argument type mismatch

This warning is given if the argument specified in a function call does not match that of the function’s
prototype. Although the warning is given, the argument will be converted to the appropriate type before
being passed. To avoid the warning, the argument can be preceded by a type cast to the appropriate
type.

5: invalid type for function

Functions may be declared to return any scalar type as well as certain aggregate types such as
structures. Functions are not allowed to return arrays. All definitions or declarations of a function or a
function pointer that return an array will generate this error message. For example:

 char (*f)()[];

6: inappropriate arguments

The declaration list for the formal parameters of a function stands immediately before the left brace of the
function body, as shown below. Undeclared arguments default to int, though it is usually better practice to
declare everything. Naturally, this declaration list may be empty, whether or not the function takes any
arguments at all. No other inappropriate symbols should appear before the left (open) brace.

badfunction(arg1, arg2)
shrt arg1; // misspelled or invalid keyword
double arg2;
{ // function body
}

goodfunction(arg1, arg2)
float arg1;
int arg2; // this line is not required
{ // function body

 W65C02S C Compiler/Optimizer

48

}
7: bad declaration syntax

A common cause of this error is the absence of a semicolon at the end of a declaration. The compiler
expects a semicolon to follow a variable declaration unless commas appear between variable names in
multiple declarations.

int i, j; // correct
char c d; // error 7
char *s1, *s2 // error 7 detected here
float k;

Sometimes the compiler may not detect the error until the next program line. A missing semicolon at the
end of a #include’d file will be detected back in the file being compiled or in another #include file. This is
a good example of why it is important to examine the context of the error rather than to rely solely on the
information provided by the compiler error message(s).

8: syntax error in typecast

The syntax of the cast operator must be carefully observed. A common error is to omit a parenthesis:

 i = 3 * (int number); // incorrect usage
 i = 3 * ((int)number); // correct usage

9: invalid operand of & (address of)

This error is given if the program attempts to take the address of something that does not have an
address associated with it.

 #define FOUR 4
 char *addr;

 addr = &FOUR; // error 9, can’t take address of a constant

10: array size must be positive integer

The dimension of an array must be greater than zero. A dimension less than or equal to zero becomes 1
by default. As can be seen from the following example, a dimension of zero is not the same as leaving the
brackets empty.

 char badarray[0]; // meaningless
 extern char goodarray[]; // good

Empty brackets are used when declaring an array that has been defined (given a size and storage in
memory) somewhere else (that is, outside the current function or file). In the above example, goodarray
is external. Function arguments should be declared with a null dimension:

 func(s1, s2)
 char s1[], s2[];
 {
 …

11: obsolete

 W65C02S C Compiler/Optimizer

49

12: invalid pointer reference

This error message will occur if pointer indirection is attempted on a type which cannot physically
represent a pointer value. The only types, other than pointers themselves, which can hold pointer values,
are int, short, and long (as well as their unsigned counterparts). All other C types will generate this
error. For example,

 char c;

 *c = 5;

will generate this error.

13: obsolete

14: obsolete

15: storage class conflict

Only automatic variables and function parameters can be specified as register.

This error can be caused by declaring a static register variable. While structure members cannot be
given a storage class at all, function arguments can be specified only as register.

A register int i declaration is not allowed outside a function – it will generate error 89 (see below).

16: data type conflict

The basic data types are not numerous, and there are not many ways to use them in declarations. The
possibilities are listed below.

This error code indicates that two incompatible data types were used in conjunction with one another. For
example, while it is valid to say long int I, and unsigned int j, it is meaningless to use double int k or
float char c. In this respect, the compiler checks to make sure that int, char, float and double are used
correctly.

data type interpretation size(bytes)

char character 1
int integer 2
unsigned/unsigned int unsigned integer 2
short integer 2
unsigned short unsigned integer 2
long/long int long integer 4
unsigned long/unsigned long int unsigned long integer 4
float floating point number 4
long float/double double precision float 8

17: internal

This error message should not occur. It is a check on the internal workings of the compiler and is not
known to be caused by any particular piece of code.

 W65C02S C Compiler/Optimizer

50

18: data type conflict

This message indicates an error in the use of the long or unsigned data type. long can be applied as a
qualifier to int and float. unsigned can be used with char, short, int and long.

 long i; // a long int
 long float d; // a double
 unsigned u; // an unsigned int
 unsigned char c;
 unsigned long l;
 unsigned float f; // error 18

19: bad syntax

This error occurs if the #line preprocessor directive is followed by something other than a numeric
constant or macro that expands to one.

 #line 100 “filename” // correct
 #line “filename” // error 19

20: structure redeclaration

This message informs you that you have tried to redefine a structure.

21: missing }

The compiler requires a comma after each member in the list of fields for a structure initialization. After
the last field, it expects a right (close) brace.

For example, this program fragment will generate error 21, since the initialization of the structure named
emily does not have a closing brace:

 struct john {
 int bone;
 char license[10];
 } emily = {
 1,
 “23-4-1984”;

22: syntax error in structure declaration

This error occurs in a structure declaration that is missing the opening curly brace or when the left curly
brace is followed by a right curly brace with nothing but white space.

 struct // error 22, missing left curly brace
 int a;
 long b;
 }

 W65C02S C Compiler/Optimizer

51

23: syntax error in enum declaration

This error occurs in an enum specification that is missing the opening curly brace or when the left curly
brace is followed by a right curly brace with nothing but white space.

 enum colors {
 } // error 23, nothing in enumerator list

24: need right parenthesis or comma in arg list

The right parenthesis is missing form a function call. Every function call must have an argument list
enclosed by parentheses even if the list is empty. A right parenthesis is required to terminate the
argument list.

In the following example, the parentheses indicate that getchar is a function rather than a variable.

 getchar();

This is the equivalent of

 CALL getchar

which might be found in a more explicit programming language. In general, a function is recognized as a
name followed by a left parenthesis.

With the exception of reserved words, any name can be made a function by the addition of parentheses.
However, if a previously defined variable is used as a function name, a compilation error will result.

Moreover, a comma must separate each argument in the list. For example, error 24 will also result from
this statement:

 funccall(arg1, arg2 arg3);

25: structure member name expected here

The symbol following the dot operator or the arrow must be valid. A valid name is a string of alphanumeric
characters or underscores. It must begin with an alphabetic character (a letter of the alphabet or an
underscore). In the last line of the following example, (salary) is not valid because ‘(‘ is not an
alphanumeric character.

 empptr = & anderson;
 empptr->salary = 12000; // these three lines
 (*empptr).salary = 12000; // are
 anderson.salary = 12000; // equivalent
 empptr = &anderson.; // error 25
 empptr- = 12000; // error 25
 anderson.(salary) = 12000; // error 25

26: must be structure/union member

The defined structure or union has no member with the name specified. If the –s option was specified, no
previously defined structure or union has such a member either.

 W65C02S C Compiler/Optimizer

52

Structure members cannot be created at will during a program. Like other variables, they must be fully
defined in the appropriate declaration list. Unions provide for variably typed fields, but the full range of
desired types must be anticipated in the union declaration.

27: invalid typecast

It is not possible to cast an expression to a function, a structure, or an array. This message may also
appear if a syntax error occurs in the expression to be cast.

 structure david { … } amy;
 amy = (struct david)(expression); // error 27

28: incompatible structures

C permits the assignment of one structure to another. The compiler will ensure that the two structures are
identical. Both structures must have the same structure tag. For example:

 struct david emily;
 struct david amy;

 emily = amy;

29: invalid use of structure

Not all operators can accept a structure as an operand. Also, structures cannot be passed as arguments.
However, it is possible to take the address of a structure using the ampersand(&), to assign structures,
and to reference a member of a structure using the dot operator.

30: missing : in ? conditional expression

The standard syntax for this operator is:

 expression ? statement1 : statement2

It is not desirable to use ?: for extremely complicated expressions; its purpose lies in brevity and clarity.

31: call of non-function

Error 31 is generated by an expression that attempts to call a data item. The following code will generate
an error 31:

 int a;
 a();

Error 31 is often caused by an expression that is missing an operator. For example, Error 31 will be
generated if the expression a * (b + c) is coded as a (b + c).

32: invalid pointer calculation

Pointers may be involved in three calculations. An integral value can be added to or subtracted from a
pointer. Pointers to objects of the same type can be subtracted from one another and compared to one
another. Since the comparison and subtraction of two pointers is dependent upon pointer size, both
operands must be of the same size.

 W65C02S C Compiler/Optimizer

53

33: invalid type

The unary minus (-) and bit complement (~) operators cannot be applied to structures, pointers, arrays
and functions. There is no reasonable interpretation for the following:

 int function();
 char array[12];
 struct joey, alias;

 a = -array;
 b = -alice;
 c = -function & WRONG;

34: undefined symbol

The compiler will recognize ony reserved words and names which have been previously defined. This
error is often the result of a typographical error or due to an omitted declaration.

35: typedef not allowed here

Symbols which have been defined as types are not allowed within expressions. The exception to this rule
is the use of sizeof(expression) and the cast operator. Compare the accompanying examples:

 struct lucille {
 int i;
 } andrew;
 typedef double bigfloat;
 typedef struct lucille foo;

 j = 4 * bigfloat f; // error 35
 k = &foo; // error 35
 x = sizeof(bigfloat);
 y = sizeof(foo); // good

The compiler will detect two errors in this code. In the first assignment, a typecast was probably intended;
compare error 8. The second assignment makes reference to the address of a structure type. However,
the structure type is just a template for instances of the structure (such as andrew). It is no more
meaningful to take the address of a structure type than any other data type, as in &int.

36: obsolete

37: invalid or missing expression

This error occurs in the evaluation of an expression containing a unary operator. The operand either is
not given or is itself an invalid expression.

Unary operators take just one operand; they work on just one variable or expression. If the operand is not
simply missing, it fails to evaluate to anything its operator can accept. The unary operators are logical not
(!), bit complement (~), increment (++), decrement (--), unary minus (-), typecast, pointer-to (*), address-of
(&), and sizeof.

38: obsolete

 W65C02S C Compiler/Optimizer

54

39: enum redeclaration

This error occurs when an enum identifier is used more than once in defining the value of enumeration
constants.

 enum states { NY, CA, PA };
 enum states { IL, FL, NJ }; // error 39

40: internal error

41: initializer not a constant

In certain initializations, the expression to the right of the equal sign (=) must be a constant. Indeed, only
automatic and register variables may be initialized to an expression. Such initializations are meant as a
convenient shorthand to eliminate assignment statements. The initialization of statics and globals actually
occurs at link-time, and not at run-time.
 {
 int i = 3;
 static int j = (2 + i); // illegal
 }

42: too many initializers

There were more values found in an initialization than array or structure members exist to hold them.
Either too many values were specified or there should have been more members declared in the
aggregate definition.

In the initialization of a complex data structure, it is possible to enclose the initializer in a single set of
braces and simply list the members, separated by commas. If more than one set of braces is used, as in
the case of a structure within a structure, the initializer must be entirely braced.
 struct {
 struct {
 char array[1];
 } substruct;
 } superstruct =

 version 1:
 {
 “aBDdefghij”
 };

 version 2:
 {
 {
 { ‘a’, ‘b’, ‘c’, …, ‘i’, ‘j’ }
 }
 };

In version 1, the initializers are copied byte-for-byte onto the structure superstruct.

Another likely source of this error is in the initialization of arrays with strings, as in:

 char array[10] = “aBDdefghij”;

 W65C02S C Compiler/Optimizer

55

This will generate error 42 because the string constant on the right is null-terminated. The null terminator
(‘\0’ or 0x00) brings the size of the initializer to 11 bytes, which overflows the ten-byte array.

43: initialization of undefined structure

An attempt has been made to assign values to a structure which has not yet been defined.
 struct david { … };
 struct dog david = { 1, 2, 3 }; // error 43

44: missing right paren in declaration

This error occurs in the declaration of a function pointer when the right parenthesis is left out.
 int (* fp)(); // error 44
 int (* fp(); // error 44

45: bad declaration syntax

This error code is an all purpose means for catching errors in declaration statements. It indicates that the
compiler is unable to interpret a word in an external declaration list.

46: missing closing brace

All the braces did not pair up at the end of compilation. If all the preceding code is correct, this message
indicates that the final closing brace to a function is missing. However, it can also result from a brace
missing from an inner block.

Keep in mind that the compiler accepts or regects code on the basis of syntax, so that an error is
detected only when the rules of grammar are violated. This can be misleading. For example, the program
below will generate error 46 at the end even though the human error probably occurred in the while loop
several lines earlier.

As the code appears here, every statement after the left brace in line 6 belongs to the body of the while
loop. The compilation error vanishes when a right brace is appended to the end of the program, but the
results during run time will be indecipherable because the brace should be placed at the end of the loop.

It is usually best to match braces visually before running the compiler. A C-oriented text editor makes this
task easier.

 main()
 {
 int i, j;
 char array[80];

 gets(array);
 i = 0;
 while (array[i]) {
 putchar(array[i]);
 i++;
 for (i=0; array[i]; i++) {
 for (j=i+1; array[j]; j++) {
 printf(“elements %d and %d are “, i, j);
 if (array[i] == array[j])
 printf(“the same\n”);

 W65C02S C Compiler/Optimizer

56

 else
 printf(“different\n”);
 }
 putchar(“\n”);
 }
 }

47: open failure on include file

When a file is #included, the compiler will look for it in a default area. This message will be generated if
the file could not be opened. An open failure usually occurs when the included file does not exist where
the compiler is searching for it. Note that a drive specification is allowed in include statement, but this
diminishes flexibility somewhat.

48: invalid symbol name

This message is produced by the preprocessor, which is that part of the compiler which handles lines
which begin with a pound sign (#). The source for the error is on such a line. A legal name is a string
whose first character is an alphabetic (a letter of the alphabet or an underscore). The succeeding
characters may be any combination of alphanumeric characters (alphabetics and numerals). The
following symbols will produce this error code.

 2nd_time,
 dont_do_this!

49: multiply defined symbol

This message warns that a symbol has already been declared and that it is illegal to redeclare it. The
following is a representative example:

 Int I, j, k, l;

50: missing bracket

This error code is used to indicate the need for a parenthesis, bracket or brace in a variety of
circumstances.

51: lvalue required

Only lvalues are allowed to stand on the left-hand side of an assignment. For example:

 Int num;

 Num = 7;

They are distinguished from rvalues, which can never stand on the left of an assignment, by the fact that
they refer to a unique location in memory where a value can be stored. An lvalue may be thought of as a
bucket into which an rvalue can be dropped. Just as the contents of one bucket can be passed to
another, so can an lvalue, y, be assigned to another lvalue, x:

 #define NUMBER 512

 x = y;

 W65C02S C Compiler/Optimizer

57

 1024 = z; // wrong, rvalues are reversed
 NUMBER = x; // wrong, NUMBER is an rvalue

Some operators which require lvalues as operands are increment (++), decrement (--), and address-of
(&). It is not possible to take the address of a register variable as was attempted in the following example:

 register int i, j;

 i = 3;
 j = &i;

52: obsolete

53: multiply defined label

On occasions when the goto statement is used, it is important that the specified label be unique. There is
no criterion by which the computer can choose between identical labels. If you have trouble finding the
duplicate label, use your text editor to search for all occurrences of the string.

54: obsolete

55: missing quote

The compiler found a mismatched double quote (“) in a #define preprocessor command. Unlike brackets,
quotes are not paired innermost to outermost, but sequentially. So the first quote is associated with the
second, the third with the fourth, and so on. Single quotes (‘) and double quotes (“) are entirely different
characters and should not be confused. The latter are used to delimit string constants. A double quote
can be included in a string by use of a backslash, as in this example:

 “this is a string”
 “this is a string with an embedded quote: \”. “

56: missing apostrophe

The compiler found a mismatched single quote or apostrophe (‘) in a #define preprocessor command.
Single quotes are paired sequentially (see error 55). Although quotes can not be nested, a quote can be
represented in a character constant with a backslash:

 char c = ‘\’’’; // c is initialized to a single quote

57: obsolete

58: invalid # encountered

The pound sign (#) begins each command for the preprocessor: #include, #define, #if, #ifdef, #ifndef,
#else, #endif, #asm, #endasm, #line and #undef. These symbols are strictly defined.

59: macro too long

Macros can be defined with a preprocessor command of the following form:

 #define [identifier] [substitution text]

 W65C02S C Compiler/Optimizer

58

The compiler then proceeds to replace all instances of identifier with the substitution text that was
specified by the #define.

This error code refers to the substitution text of a macro. Whereas ideally a macro definition may be
extended for an arbitrary number of lines by ending each line with a backslash (\), for practical purposes
the size of a macro has been limited to 255 characters.

60: loss of const/volatile info

This error occurs when passing the address of a variable that is declared as const and/or volatile.
 extern const volatile int clock_time;

 set_time(&clock_time); // error 60

61: reference to undefined structures

This message comes in two forms:

1) As a warning, due to referencing an undefined structure member.
2) As an error, when trying to obtain the size of an undefined structure.

a = sizeof(struct nodef); // error 61 if nodef not defined

62: function body must be compound statement

The body of a function must be enclosed by braces, even though it may consist of only one statement:

 function()
 {
 return 1;
 }

This error can be caused by an error inside a function declaration list, as in:

 func(a, b)
 int a; chr b;
 {
 …
 }

63: undefined label

A goto statement is meaningless if the corresponding label does not appear somewhere in the code. The
compiler disallows this since it must be able to specify a destination to the computer.

It is not possible to go to a label outside the present function (labels are local to the function in which they
appear). Thus, if a label does not exist in the same procedure as its corresponding goto, this message
will be generated.

64: inappropriate arguments

When a function is declared (as opposed to defined), it is poor syntax to specify an argument list:

 function(string)

 W65C02S C Compiler/Optimizer

59

 char *string;
 {
 char *func1(); // correct
 double func2(x, y); // wrong;
 …
 }

In this example, function() is being defined, but func1() and func2() are being declared.

65: invalid function argument

This error occurs in a function definition that contains an argument that is not a valid identifier.
 sub(a, 2b) { // error 65 because identifiers can’t begin with a
 // numeric character

66: expected comma

In an argument list, arguments must be separated by commas.

67: invalid else

An else was found which is not associated with an if statement. Else is bound to the nearest if at its own
level of nesting. So if-else pairings are determined by their relative placement in the code and their
grouping by braces.

 If (…) {
 …
 if (…) {
 …
 } else if (…)
 …
 } else {
 …
 }

The indentation of the source text should indicate the intended structure of the code. Note that the
indentation of the if and else-if means only that the programmer wanted both conditionals to be nested at
the same level, in particular one step down from the presiding if statement. But it is the placement of
braces that determines this for the compiler. The example above is correct, but probably does not
conform to the expectations revealed by the indentation of the else statement. As shown here, the else is
paired with the first if, not the second.

68: bad statement syntax

The keywords used in declaring a variable, which specify storage class and data type, must not appear in
an executable statement. In particular, all local declarations must appear at the beginning of a block, that
is, directly following the left brace which delimits the body of a loop, conditional or function. Once the
compiler has reached a non-declaration, a keyword such as char or int must not lead a statement;
compare the use of the casting operator:

 func()
 {
 int i;
 char array[12];
 float k = 2.03;

 W65C02S C Compiler/Optimizer

60

 i = 0;
 int m; // error 68
 j = i + 5;
 i = (int)k; // correct
 if (i) {
 int i = 3;

 j = i;
 printf(“%d”, i);
 }
 printf(“%d%d\n”, i, j);
 }

69: missing semicolon

A semicolon is missing from the end of an executable statement. This error code is similar to error code 7.
It will remain undetected until the following line and is often spuriously caused by a previous error.

70: goto needs a label

Compare your use of goto with this example. This message says that you did not specify where you
wanted to goto with label:

 goto label;
 …
 label:
 …

It is not possible to goto just any identifier in the source code; labels are special because they are
followed by a colon.

71: statement syntax error in do-while

The body of a do-while may consist of one statement or several statements enclosed in braces. A while
conditional is required after the body of the loop. This is true even if the loop is infinite, as it is required by
the rules of syntax. After typing in a long body, do not forget the while conditional.

72: statement syntax error in for

This error occurs when the first of the two semicolons that separate the three expressions found in a for
loop condition are missing.

 for (i=0 i; i++) { // error 72 due to missing semicolon

73: statement syntax error in for body

This error occurs when the second of the two semicolons that separate the three expressions found in a
for loop condition is missing.

 for (i=0; i i++) { // error 73 due to missing semicolon

74: expression must be integer constant

 W65C02S C Compiler/Optimizer

61

This error occurs when a variable occurs instead of an integer constant in declaring the size of an array,
initializing an element in an enum list, or specifying a case constant for a switch.

75: missing colon on case

This should be straightforward. If the compiler accepts a case value, a colon should follow it. A semi-
colon must not be accidentally entered in its place.

76: obsolete

77: case outside of switch
The keyword, case, belongs to just one syntactic structure, the switch. If case appears outside the
braces which contain a switch statement, this error is generated. Remember that all keywords are
reserved, so that they cannot be used as variable names.

78: missing colon on default

This message indicates that a colon is missing after the keyword, default. Compare with error 75.

79: duplicate default

The compiler has found more than one default in a switch. switch will compare a variable to a given list
of values. But it is not always possible to anticipate the full range of values which the variable may take.
Nor is it feasible to specify a large number of cases in which the program is not particularly interested.

So C provides for a default case. The default will handle all those values not specified by a case
statement. It is analogous to the else companion to the conditional, if. Just as there is one else for every
if, only one default case is allowed in a switch statement. However, unlike the else statement, the
position of a default is not crucial; a default can appear anywhere in a list of cases.

80: default outside of switch

The keyword, default, is used just like case. It must appear with the brackets which delimit the switch
statement.

81: break/continue error

break and continue are used to skip the remainder of a loop in order to exit or repeat the loop. break will
also end a switch statement. But when the keywords, break or continue, are used outside of these
contexts, this message results.

82: obsolete

83: too many nested includes

#includes can be nested, but this capacity is limited. The compiler will balk if required to descend more
than ten levels into a nest.

84: constant expression expected

This error occurs when an integer constant is missing, such as in initializing an element in an enum list,
specifying a case constant for a switch, or for a #if preprocessor directive.

 W65C02S C Compiler/Optimizer

62

85: not an argument

The compiler has found a name in the declaration list that was not in the argument list. Only the converse
case is valid, i.e., an argument can be passed and not subsequently declared.

86: null dimension in array

In certain cases, the compiler knows how to treat multidimensional arrays whose left-most dimensions are
not given in its declaration. Specifically, this is true for an extern declaration and an array initialization.
The value of any dimension which is not the left-most must be given.

 extern char array[][12]; // correct
 extern char badarray[5][]; // wrong

87: invalid character constant

Character constants may consist of one or two characters enclosed in single quotes, as ‘a’ or ‘ab’. There
is no analog to a null string, so ‘’ (two single quotes with no intervening white space) is not allowed. Recall
that the special backslash characters (\b, \n, \t, etc.) are singular, so that the following are valid: ‘\n’, ‘\na’,
‘a\n’. ‘aaa’ is invalid.

88: not a structure

Occurs only under compilation without the –s option. A name used as a structure does not refer to a
structure, but to some other data type:

 int i;
 i.member = 3; // error 88

89: invalid use of register storage class

A globally defined variable cannot be specified as a register. Register variables are required to be local.

90: symbol redeclared

A function argument has been declared more than once.

91: invalid use of floating point type

Floating point numbers can be negated (unary minus), added, subtracted, multiplied, divided and
compared; any other operator will produce this error message.

92: invalid type conversion

This error code indicates that a data type conversion, implicit in the code, is not allowed, as in the
following piece of code:

 int i;
 float j;
 char *ptr;

 i = j + ptr;

 W65C02S C Compiler/Optimizer

63

The diagram shows how variables are converted to different types in the evaluation of expressions.
Initially, variables of type char and short become int, and float becomes double. Then all variables are
promoted to the highest type present in the expression. The result of the expression will have this type
also. Thus, an expression containing a float will evaluate to a double.

Types have the following hierarchy:

 double float
 long
 unsigned
 int, short, char

This error can also be caused by an attempt to return a structure, since the structure is being cast to the
type of the function, as in:

 int func()
 {
 struct tag sam;
 return sam;
 }

93: invalid expression type for switch

Only a char, int or unsigned variable can be switched. See the example for error 74.

94: invalid identifier in macro definition

This error occurs in a macro definition that contains one or more arguments that are not valid identifiers.

 #define add(a, 2b) (a+2b) // error 94 because identifiers can’t
 // begin with a numeric character
95: obsolete

96: missing argument to macro

Not enough arguments were found in an invocation of a macro. Specifically, a “double comma” will
produce this error.

 #define reverse(x, y, z) (z, y, x)

 func(reverse(i, , k));

97: too many arguments in macro definition

This error occurs in a macro definition that contains more than 32 arguments in its definition.

98: not enough args in macro reference

The incorrect number of arguments was found in an invocation of a previously defined macro. As the
examples show, this error is not identical to error 96.

 #define exchange(x, y) (y, x)

 W65C02S C Compiler/Optimizer

64

 func(exchange(i)); // error 98

99: internal error

100: internal error

101: missing close parenthesis on macro reference

A right (closing) parenthesis is expected in a macro reference with arguments. In a sense, this is the
complement of error 95; a macro argument list is checked for both a beginning and an ending.

102: macro arguments too long

The combined length of a macro’s argument is limited. This error can be resolved by simply shortening
the arguments with which the macro is invoked.

103: #else with no #if

Correspondence between #if and #else is analogous to that which exists between the control flow
statements, if and else. Obviously, much depends upon the relative placement of the statements in the
code. However, #if blocks must always be terminated by #endif, and the #else statement must be
included in the block of the #if with which it is associated. For example:

 #if ERROR 0
 printf(“there was an error\n”);
 #else
 printf(“no error this time\n”);
 #endif

#if statements can be nested, as below. The range of each #if is determined by a #endif. This also
excludes #else from #if blocks to which it does not belong:

 #ifdef JAN1
 printf(“happy new year!\n”);
 #if sick
 printf(“I think I’ll go home now\n”);
 #else
 printf(“I think I’ll have another\n”);
 #endif
 #else
 printf(“I wonder what day it is\n”);
 #endif

If the first #endif was missing, error 103 would result. And without the second #endif, the compiler would
generate error 107.

104: #endif with no #if

#endif is paired with the nearest #if, #ifdef or #ifndef which precedes it. (See error 103.)

105: #endasm with no #asm

#endasm must appear after an associated #asm. These compiler-control lines are used to begin and end
embedded assembly code. This error code indicates that the compiler has reached a #endasm without
having found a previous #asm. If the #asm was simply missing, the error list should begin with the
assembly code (which are undefined symbols to the compiler).

 W65C02S C Compiler/Optimizer

65

106: #asm within #asm block

There is no meaningful sense in which in-line assembly code can be nested, so the #asm keyword must
not appear between a paired #asm/#endasm. When a piece of in-line assembly is augmented for
temporary purposes, the old #asm and #endasm can be enclosed in comments as place-holders.

 #asm
 // temporary asm code
 // #asm old beginning
 // more asm code
 #endasm

107: missing #endif

A #endif is required for every #if, #ifdef and #ifndef, even if the entire source file is subject to a single
conditional compilation. Try to assign pairs beginning with the first #endif. Backtrack to the previous #if
and form the pair. Assign the next #endif with the nearest unpaired #if. When this process becomes
greatly complicated, you might consider rethinking the logic of your program.

108: missing #endasm

In-line assembly code must be terminated by a #endasm in all cases. #asm must always be paired with a
#endasm.

109: obsolete

110: invalid use of : operator

The colon operator occurs in two places:

1) following a question mark as part of a conditional, as in (flag ? 1 : 0).
2) Following a label inserted by the programmer or following one of the reserved labels, case

and default.

111: invalid use of a void expression

This error can be caused by assigning a void expression to a variable, as in this example:

 void func();
 int h;

 h = func();

112: obsolete

113: duplicate case in switch

A switch statement has two case values which are the same. Either the two cases must be combined
into one, or one must be discarded. For instance:

 switch(c) {
 case NOOP:
 return 0;

 W65C02S C Compiler/Optimizer

66

 case MULT:
 return x * y;
 case DIV:
 return x / y;
 case NOOP:
 default:
 return 1;
 }

The case of NOOP is duplicated and will generate an error.

114: macro redefined

For example,

 #define islow(n) (n >= 0 && n < 5)
 …
 #define islow(n) (n >= 0 && n <= 5)

The macro, islow, is being used to classify a numerical value. When a second definition of it is found, the
compiler will compare the new substitution string with the previous one. If they are found to be different,
the second definition will become current, and this error code will be produced.

If the example, the second definition differs from the first in a single character, ‘=’. The second definition is
also different from this one:

 #define islow(n) n > 0 && n <= 5

since the parentheses are missing.

The following lines will not generate this error:

 #define NULL 0
 …
 #define NULL 0

But these are different from:

 #define NULL ‘\0’

In practice, this error message does not affect the compilation of the source code. The most recent
“revision” of the substitution string is used for the macro. But relying upon this fact may not be a wise
habit.

115: keyword redefined

Keywords cannot be defined as macros, as in:
 #define int foo

If you have a variable which may be either, for instance, a short or a long integer, there are alternative
methods for switching between the two. If you want to compile the variable as either type of integer,
consider the following:
 #ifdef LONGING
 long i;

 W65C02S C Compiler/Optimizer

67

 #else
 short i;
 #endif

Another possibility is through a typedef:
 #ifdef LONGINT
 typedef long VARTYPE;
 #else
 typedef short VARTYPE;
 #endif
 VARTYPE i;

116: field width must be > 0

A field in a bit field structure can not have a negative number of bits.

117: invalid 0 length field

A field in a bit field structure can not have zero bits.

118: field is too wide

A field in a bit field structure can not have more than 16 bits.

119: field not allowed here

A bit field definition can only be contained in a structure.

120: invalid type for field

The type of a bit field can only be of type int or unsigned int.

121: ptr/int conversion

The compiler issues this warning message if it must implicitly convert the type of an expression from
pointer to int or long, or vice versa.

If the program explicitly casts a pointer to an int, this message will not be issued. However, in this case,
error 122 may occur.

For example, the following will generate warning 121:

 char *cp;
 int i;

 …
 i = cp; // implicit conversion of char to int

When the compiler issues warning 121, it will generate correct code if the sizes of the two items are the
same.

122: ptr & int not same size

If a program explicitly casts a pointer to an int, and the sizes of the two items differ, the compiler will issue
this warning message. The code that is generated when the converted pointer is used in an expression
will use only as much of the least significant part of the pointer as will fit in an int.

 W65C02S C Compiler/Optimizer

68

123: far/huge ptr & ptr not same size

This error occurs when trying to assign a near pointer to a far or huge pointer. A warning is generated
when casting a far or huge pointer to a near pointer.

124: invalid ptr/ptr expression

If a program attempts to assign one pointer to another without explicitly casting the two pointers to be of
the same type, and the types of the two pointers are in fact different, the compiler will issue this warning
message.

The compiler will generate code for the assignment, and if the sizes of the two pointers are the same, the
code will be correct. But if the sizes differ, the code may not be correct.

125: too many subscripts or indirection on integer

This warning message is issued if a program attempts to use an integer as a pointer; that is, as the
operand of a star operator.

If the sizes of a pointer and an int are the same, the generated code will access the correct memory
location, but if they are not, it will not.

For example:

 char c;
 long g;

 *0x5c = 0; // warning 125, because 0x5c is an int
 c[i] = 0; // warning 125, because c+i is an int
 g[i] = 0; // error 12, because g+i is a long

126: too many arguments

This error occurs when a function is invoked with more arguments than is specified in its prototype or
definition. The only exception allowed is when a variable number of arguments is specified in the
prototype.

127: too few arguments

This error occurs when a function is invoked with less arguments than is specified in its prototype or
definition.

128: #error

This error was generated by the #error directive and is followed by the optional sequence of
preprocessing tokens found in the source code.

129: #elif with no #if

This error occurs when the #elif preprocessor directive is used without a preceding #if directive.

130: obsolete

 W65C02S C Compiler/Optimizer

69

131: ## at the beginning/end of macro body

This error occurs when a ## is found as the first or last end of a macro definition body.

 #define TWOSHARP 2## // error 131

132: obsolete

133: # not followed by a parameter

This error may occur in a #define macro in which the # operator is applied to a parameter in the
replacement list. If the # token is not followed by a parameter, this error message will be generated.

134: obsolete

135: attempt to undefined a predefined macro

This error occurs when attempting to use a #undef on those macros that are predefined by the compiler,
such as __STDC__, __TIME__, __DATE__, __FILE__, __LINE__, and __FUNC__.

 #undef __TIME__ // error 135

136: invalid #include directive

This error occurs when the #include directive is not followed by a string literal or a filename enclosed in <
> signs.

 #include filename // error 136

137: obsolete

138: missing right paren

This error occurs when attempting to use the defined directive with a left parenthesis and no matching
right parenthesis.

 #if defined(FOOBAR // error 138

139: missing identifier

This error occurs when attempting to use the defined directive with no identifier following the defined
keyword.

 #if defined // error 139
140: obsolete

141: obsolete

142: range-modifier ignored

Using a range modifier (near, far, etc.) on a structure or union member is allowed by the parser but has
no effect and is ignored.

143: range-modifier syntax error

 W65C02S C Compiler/Optimizer

70

A range-modifier is illegal as part of a function declaration. You cannot say that a function is near, far,
huge, etc.

144: invalid operand for sizeof

This error occurs when attempting to obtain the sizeof of something other than a previously defined data
structure.

 Sub() {
 Int I = sizeof(sub); // error 144
 }

145: function called without prototype

This warning is generated for functions that are called without having been prototyped. It only occurs
when compiling with the –wp option.

146: constant value too large

This error occurs when attempting to use a constant larger than the unsigned long 0xffffffff in an
expression.

147: invalid hexadecimal constant

This error occurs when the character following a 0x or 0X is not a valid hexadecimal constant.

 int i = 0xg1; // error 147, ‘g’ is not a valid hex constant

148: invalid floating constant

This error occurs if the first letter excluding the optional sign following the e or E in a floating point number
is something other than a digit.

 double d = 123e+f; // error 148, ‘f’ is not a digit

149: invalid character on control line

This error occurs on conditional preprocessor lines that expect a single constant expression but get extra
information.

 #if CONST invalid // error 149 due to extra characters “invalid”

150: unterminated comment

This error occurs if the start of a comment (/*) is not terminated with (*/) before the end of the file.
151: no block level extern initialization

This error occurs when initialization of an extern variable is attempted inside a function. Initialization of
externs is permissible outside of functions, or the function can declare the variable as extern and then
initialize it further down in the code using an assignment statement.

152: missing identifier in parameter list

 W65C02S C Compiler/Optimizer

71

This error occurs when the type of an argument is specified in a function definition without being followed
by the argument itself.

 sub(int) { // error 152, missing the name of the int arg

153: missing static function definition

This error occurs if a function has been declared as static in a file and has not been followed by its actual
definition further down in the file.

154: function definition can’t be via typedef

This error occurs when incorrectly defining a function using a typedef. It is possible to define a typedef
that is a function such as:

 typedef int F(void);

which sets the type F to be a function with no arguments returning int. Then, a function can be declared
such as:

 F f;

which is legal. However, the function definition:

 F f ()

is illegal.

155: file must contain external definition

This error occurs in a file with no external data or function definitions when compiling with the –pa option
to use the ANSI preprocessor.

156: wide string literal not allowed here

This error occurs when attempting to use a wide string literal with the #include or #line directives.

 #include L”filename” // error 156

157: incompatible function declarations

This error occurs if a function declaration does not match a previous definition or declaration for the same
function.

158: called function may not return incomplete type

This error occurs when a function attempts to return a structure which has not been defined. If a functions
is called that returns a structure, but the size of the structure is unknown, then it is not possible for the
compiler to know how much data is being returned by the function and how much space to reserve for the
return value.

For example:

 Struct foo x();

 W65C02S C Compiler/Optimizer

72

 Main()
 {
 x();
 }

159: syntax error in #pragma

This error occurs if the #pragma is used for a function call and does not match the following syntax.

 #pragma regcall([return=] func(arg1, arg2, …, argn)]
 #pragma amicall(base, offset, func(arg1, arg2, …, argn))
 #pragma libcall func base offset regmask
 #pragma syscall func offset regmask

160: auto variable not used in function

This warning occurs when compiling with the –wu option and a function containing a local variable has
not been used.

161: function defined without prototype

This warning occurs when compiling with the –wp option and a function does not have its arguments
prototyped or if there are no arguments but you have not specified void.

162: can’t take address of register class

This error occurs when attempting to take the address of a variable that has been declared as a register
class variable.

 register int a;
 int *ip;

 ip = &a; // error 162

163: upper bits of hex character constant ignored

This warning occurs if the compiler encounters a hexadecimal character constant (specified by \x) whose
value cannot fit within a single byte. For example:

 char *cptr = “\x9b7”;

Will generate a warning because “\x9b7” cannot be stored within one byte. The compiler will ignore the
most significant bits, and use the least significant bits. In the example the compiler will treat “\x9b7” as
“\xb7”. This warning will occur if you accidentally place a digit from 0 through 9 or a letter from a through
f immediately after a \x escape sequence. In the example if you intended to have 0x9b followed by the
ASCII digit 7, you could use string concatenation to produce the desired result:

 char *cptr = “\x9b” “7”;

164: non-void type function must have return value

This error message can occur only if the –wr compiler option is used. If the compiler encounters a
function which is defined as returning a value (int, char, or the like) but which does not have an explicit
return. For example:

 W65C02S C Compiler/Optimizer

73

 int func()
 {
 printf(“hello\n”);
 }

would generate this message. Replacing int func() with func() will not correct the error. The specification
void func() will correct the problem. The specification of an explicit return will also.

165: item not previously declared found in prototype

This warning message will be generated if a struct appears as an argument in a function prototype and
there is no previous declaration for the struct. This warning will be generated if there is no struct
declaration or if the struct declaration occurs after the prototype statement. The sequence struct
declaration, prototype statement, function definition will correct the problem as in this example:

 struct astruct {
 int a;
 char c;
 }

 void func(struct astruct arg);

 void func(struct astruct arg)
 {
 …
 }

This problem presents special difficulties when it arises because the intended struct declaration occurs
after the prototype definition. A strict interpretation of ANSI rules, in this case, produces results that may
seem arbitrary and illogical. Positioning the struct declaration so that it occurs before the prototype
definition corrects the problem. If the problem is not corrected, it is unlikely that the program will run
correctly.

166: enum must be declared outside prototype

This problem is similar to error 165 but pertains to the enum datatype.

167: can’t take address of stack in this memory model

This error occurs when an attempt is made to take the address of a stack item.

168: missing semicolon in asm block

When the asm keyword is used to declare a block of assembly language statements, each must be
terminated with a semicolon.

169: can’t convert far pointer to near

A far pointer cannot be converted to a near pointer because of the difference in the size of the pointers.

170: can’t use TSB/TRB on volatile values

This warning message is generated to alert the developer of the inability to use TSB/TRB on volatile
values.

 W65C02S C Compiler/Optimizer

74

INDEX

#asm, 31
#else, 22
#endasm, 31
#include, 10
#pragma, 31

C _MACROS, 24
CCOPT6502, 11
CCTEMP, 10

endif, 22

I, 11
initialized data, 29

KDATA, 31

MO, 11

ORG, 16

P0X, 11
printf, 33
-PX, 11

–QP and -QS options, 23

scanf, 33
-SFMR, 24
-SP option, 33
STARTUP, 29
STARTUP.ASM, 29

uninitialized data, 29

Volatile Qualifiers, 36

WDC _LIB, 37
WDC_INC_6502, 10
WO, 11

	1BCHAPTER 1 Introduction
	7BCompiler Operation
	8BInput File Example:
	9BOutput Files Examples:
	212BCreating an Object File
	213BCreating an Assembly Language File

	10BSearching for #Include Files
	214BSearch Order #include

	11BCompiler Options
	215BCompiler Option Philosophy
	216BCCOPT6502 Environment Variable

	12BC Programs in ROM
	217BC Program Organization
	218BSystem Organization
	219BCreating A ROM Program

	1BCHAPTER 2 WDC02CC
	13BConfiguring the Program
	220BUser Registers
	221BStack Registers
	222BCompiler Registers
	223BWork Area
	224BFloating Point Registers

	14BRunning the Program
	15BOption Summary
	16BOption Descriptions

	2BCHAPTER 3 Technical Notes
	17BPseudo-Registers
	18BPseudo-Stack Frame
	19BFunction Calls and Argument Passing
	225BFunction Arguments
	226BFunction Return Value

	20BStartup Code
	227BIdentifier Name Prefixes

	21BMemory Management
	22BCAVEATS
	228BFloating Point Considerations
	229BSection Pragma

	23BConsts and Strings
	24BIn-Line Assembly Code
	25BASM Keyword
	26BOther Preprocessor Features
	27BProducing Optimum Code
	28BOptimizer
	29BFloating Point
	30BReferencing I/O
	31BPrototyping Functions
	32BVariable Name Length
	33BDebugging
	34BAssembling Compiler Output Considerations
	35BVolatile Qualifiers
	36BPath size Limitation
	37BGlobal Function and Variable Definition
	38BFactorization of Source Code

	3BCHAPTER 4 Libraries
	39BLibrary Names
	40BANSI Functions
	41BHeap Functions

	4BAPPENDIX A WDC Supported C Functions
	5BAPPENDIX B Description of Compiler Error Messages
	42B1: bad digit in octal constant
	43B2: obsolete
	44B3: unterminated string
	45B4: argument type mismatch
	46B5: invalid type for function
	47B6: inappropriate arguments
	48B7: bad declaration syntax
	49B8: syntax error in typecast
	50B9: invalid operand of & (address of)
	51B10: array size must be positive integer
	52B11: obsolete
	53B12: invalid pointer reference
	54B13: obsolete
	55B14: obsolete
	56B15: storage class conflict
	57B16: data type conflict
	58B17: internal
	59B18: data type conflict
	60B19: bad syntax
	61B20: structure redeclaration
	62B21: missing }
	63B22: syntax error in structure declaration
	64B23: syntax error in enum declaration
	65B24: need right parenthesis or comma in arg list
	66B25: structure member name expected here
	67B26: must be structure/union member
	68B27: invalid typecast
	69B28: incompatible structures
	70B29: invalid use of structure
	71B30: missing : in ? conditional expression
	72B31: call of non-function
	73B32: invalid pointer calculation
	74B33: invalid type
	75B34: undefined symbol
	76B35: typedef not allowed here
	77B36: obsolete
	78B37: invalid or missing expression
	79B38: obsolete
	80B39: enum redeclaration
	81B40: internal error
	82B41: initializer not a constant
	83B42: too many initializers
	84B43: initialization of undefined structure
	85B44: missing right paren in declaration
	86B45: bad declaration syntax
	87B46: missing closing brace
	88B47: open failure on include file
	89B48: invalid symbol name
	90B49: multiply defined symbol
	91B50: missing bracket
	92B51: lvalue required
	93B52: obsolete
	94B53: multiply defined label
	95B54: obsolete
	96B55: missing quote
	97B56: missing apostrophe
	98B57: obsolete
	99B58: invalid # encountered
	100B59: macro too long
	101B60: loss of const/volatile info
	102B61: reference to undefined structures
	103B62: function body must be compound statement
	104B63: undefined label
	105B64: inappropriate arguments
	106B65: invalid function argument
	107B66: expected comma
	108B67: invalid else
	109B68: bad statement syntax
	110B69: missing semicolon
	111B70: goto needs a label
	112B71: statement syntax error in do-while
	113B72: statement syntax error in for
	114B73: statement syntax error in for body
	115B74: expression must be integer constant
	116B75: missing colon on case
	117B76: obsolete
	118B77: case outside of switch
	119B78: missing colon on default
	120B79: duplicate default
	121B80: default outside of switch
	122B81: break/continue error
	123B82: obsolete
	124B83: too many nested includes
	125B84: constant expression expected
	126B85: not an argument
	127B86: null dimension in array
	128B87: invalid character constant
	129B88: not a structure
	130B89: invalid use of register storage class
	131B90: symbol redeclared
	132B91: invalid use of floating point type
	133B92: invalid type conversion
	134B93: invalid expression type for switch
	135B94: invalid identifier in macro definition
	136B95: obsolete
	137B96: missing argument to macro
	138B97: too many arguments in macro definition
	139B98: not enough args in macro reference
	140B99: internal error
	141B100: internal error
	142B101: missing close parenthesis on macro reference
	143B102: macro arguments too long
	144B103: #else with no #if
	145B104: #endif with no #if
	146B105: #endasm with no #asm
	147B106: #asm within #asm block
	148B107: missing #endif
	149B108: missing #endasm
	150B109: obsolete
	151B110: invalid use of : operator
	152B111: invalid use of a void expression
	153B112: obsolete
	154B113: duplicate case in switch
	155B114: macro redefined
	156B115: keyword redefined
	157B116: field width must be > 0
	158B117: invalid 0 length field
	159B118: field is too wide
	160B119: field not allowed here
	161B120: invalid type for field
	162B121: ptr/int conversion
	163B122: ptr & int not same size
	164B123: far/huge ptr & ptr not same size
	165B124: invalid ptr/ptr expression
	166B125: too many subscripts or indirection on integer
	167B126: too many arguments
	168B127: too few arguments
	169B128: #error
	170B129: #elif with no #if
	171B130: obsolete
	172B131: ## at the beginning/end of macro body
	173B132: obsolete
	174B133: # not followed by a parameter
	175B134: obsolete
	176B135: attempt to undefined a predefined macro
	177B136: invalid #include directive
	178B137: obsolete
	179B138: missing right paren
	180B139: missing identifier
	181B140: obsolete
	182B141: obsolete
	183B142: range-modifier ignored
	184B143: range-modifier syntax error
	185B144: invalid operand for sizeof
	186B145: function called without prototype
	187B146: constant value too large
	188B147: invalid hexadecimal constant
	189B148: invalid floating constant
	190B149: invalid character on control line
	191B150: unterminated comment
	192B151: no block level extern initialization
	193B152: missing identifier in parameter list
	194B153: missing static function definition
	195B154: function definition can’t be via typedef
	196B155: file must contain external definition
	197B156: wide string literal not allowed here
	198B157: incompatible function declarations
	199B158: called function may not return incomplete type
	200B159: syntax error in #pragma
	201B160: auto variable not used in function
	202B161: function defined without prototype
	203B162: can’t take address of register class
	204B163: upper bits of hex character constant ignored
	205B164: non-void type function must have return value
	206B165: item not previously declared found in prototype
	207B166: enum must be declared outside prototype
	208B167: can’t take address of stack in this memory model
	209B168: missing semicolon in asm block
	210B169: can’t convert far pointer to near
	211B170: can’t use TSB/TRB on volatile values

	6INDEX

