

 September 13, 2013 WDCTools Debugger

 1

WDCTools
DEBUGGER

(WDCDB)

 September 13, 2013 WDCTools Debugger

 2

Table of Contents

CHAPTER 1 Overview .. 5
Welcome to the Wonderful World of WDCDB ... 5

CHAPTER 2 Before Running WDCDB .. 6
C Language Program Debugging ... 6
Assembly Language Program Debugging ... 6
Linking for Debugging .. 6
The WDCDB.INI File.. 6

CHAPTER 3 Running WDCDB .. 8
Starting WDCDB ... 8
Startup Options .. 8
Loading a Program .. 8
Loading The Symbol Table ... 9
Where to Find the Source Files .. 9
Running Programs ... 9
Stopping the Program .. 9
Single Stepping the Program ... 9
Breakpoints .. 10
Temporary Breakpoint ... 10
Watches ... 10

CHAPTER 4 Menus ... 11
File Menu ... 11

Load and Reload Program and Symbols .. 11
Save and Load Desktop ... 11
Save Breaks and Watches .. 11
Exit WDCDB ... 11

Edit Menu .. 11
Text Search .. 12
Code and Data Position .. 12
Edit Startup Options ... 12
Edit Runtime Options .. 12

View Menu .. 13
View Code Menu Command ... 13
View Data Menu Command .. 13
View File Menu Command .. 13
View Registers Menu Command ... 13
View Stack Menu Command ... 13
View Breakpoints Menu Command ... 13
View Watches Menu Command .. 13
View Symbols Menu Command .. 13
View Modules Menu Command .. 13
View Locals Menu Command ... 14

Run Menu .. 14
Go Menu Commands ... 14
Single Stepping Menu Commands ... 14
Restart Program Menu Command ... 14

Memory Menu ... 14

 September 13, 2013 WDCTools Debugger

 3

Inspect Memory Menu Command ... 15
Fill Memory Menu Command ... 15
Search Memory Menu Command .. 15
Compare Memory Menu Command .. 15
Move Memory Menu Command ... 16
Read Memory from File Menu Command ... 16
Write Memory to File Menu Command .. 16
Empty Cache Menu Command .. 17

Breakpoint Menu ... 17
Toggle Breakpoint Menu Command.. 17
Set Breakpoint Menu Command .. 17
Delete Breakpoint Menu Command .. 17
Delete All Breakpoints Menu Command ... 17
ICD Breakpoint .. 17

Watch Menu... 17
Add Watch Menu Command ... 18
Change Watches Menu Command ... 18
Delete Watch Menu Command .. 18
Delete All Watches Menu Command .. 18

Windows Menu .. 18
Close Window Menu Command .. 18

Help Menu ... 18
Help Contents Menu Command ... 18
About Menu Command ... 19
Status Window Menu Command ... 19
Verbose Status Toggle Menu Command ... 19
Menu Shortcut Keys .. 19

CHAPTER 5 Windows .. 20
Status Window ... 20
Symbols Window ... 20
Data Window ... 20
Code Window .. 20
Breakpoint Window ... 20
Modules Window ... 21
Watch Window .. 21
Locals Window .. 21
Inspector Window .. 21
File Window .. 21
Register Window ... 21
Stack Window .. 22

CHAPTER 6 Debug File Format ... 23
Introduction ... 23
Creating the Symbol File ... 23
Basic Information .. 23
Basic File Structure .. 23
File Header Structure ... 23
Module Information ... 24
Section Information ... 24
Line Record Information ... 24
Symbol Record Information .. 24
Global Symbol Information ... 24
Global String Table .. 24
Auxiliary Record Table ... 24
Source File Record Information... 25

 September 13, 2013 WDCTools Debugger

 4

Auxiliary Record Table Format ... 27
Common Operations .. 27

CHAPTER 7 Technical Notes ... 29
Interrupt Debugging Strategy .. 29

INDEX ... 30

 September 13, 2013 WDCTools Debugger

 5

CHAPTER 1 Overview

Welcome to the Wonderful World of WDCDB

The WDCDB tool was designed for the W65C816S and W65C02 microprocessors. It has two operating functions as either a
simulator with a full processor interpreter or through a serial port as a remote debugger. It is designed to operate with the
WDC C and Assembly Language Development tools and can operate with full source mode display, raw disassembly, or a
mixture of the two.

The real power of the WDCDB can be most fully realized when used with programs written in the C language. The debugger
gives full source level viewing and stepping with visible breakpoints. In addition, three special window types provide
detailed information on variables, data structures and program flow.

However, it is hard to describe the power of debugging assembly language programs at the source level. It has to be
experienced to be fully appreciated.

This manual has been organized into two main sections. The first section gives a detailed description on how to prepare
programs for debugging, how to run and step through programs, set breakpoints and watchpoints and how to examine and
modify memory. The second section is a reference and describes each individual menu command and each type of window.

 September 13, 2013 WDCTools Debugger

 6

CHAPTER 2 Before Running WDCDB

Before running WDCDB, the program files must be compiled and/or assembled and linked with the appropriate options to
generate a valid symbol file. Secondly, a properly configured .INI file must be created. The following topics address these
issues.

C Language Program Debugging

To debug C language programs, they must be compiler and linked. When using the WDC C compiler, WDCxxCC, there are
two things that need to be done to obtain optimum results. First, the program must be compiled with the -bs option. This
option tells the compiler to generate special source level debugging information that will be passed through the assembler to
the linker and eventually to the symbol file.

Secondly, until the program is close to being finished, refrain from using the peephole optimizer. The reason for this is that
some of the operations of the optimizer cause the assembly language code to be rearranged and will no longer be
synchronized with the source statements. Attempting to debug an optimized program at the source level can be confusing and
frustrating. The best course is to debug the program with optimization disabled and then if there are problems after
optimizing, run the debugger in the mixed source and assembly mode as this will provide the source context, but will allow
detailed examination of the actual program flow.

Note that the information placed in the assembly language output file is parsed by the assembler and placed in the object file.
If the assembler is invoked with the -g option, it will also place its own source level information in the object file which will
conflict with the information derived from the original C source file. So, if you compile to assembly language and then
invoke the assembler manually, be sure to not use the -g option on the assembler. If you let the compiler invoke the
assembler automatically, this will not be a problem.

Assembly Language Program Debugging

To debug assembly language programs using the original source assembly language file, all that is needed is to assemble the
file with the WDC assembler, WDCxxAS, using the -g option. This tells the assembler to generate source level information
and place it in the object module. The file, filename.bin, is created by the –g option and needs to be included in the
WDCDB>.INI file. The linker will collect this information and place it into the symbol file. Be sure not to use the -g option
on assembly language files generated by the C compiler since the compiler generates its own source level information.

Linking for Debugging

The final step in preparing to debug a program is to generate the final binary image and symbol file. The WDC linker,
WDCLN, performs this step. Source level debugging information is placed in the object modules by the compiler and the
assembler. The linker collects all this information and creates a separate file with a .SYM suffix. To generate the symbol file,
the -g option must be specified to the linker. In addition, the output format must be the proprietary format. This output format
is the default, however it can be explicitly specified by using the -hz option.

 September 13, 2013 WDCTools Debugger

 7

The WDCDB.INI File

The WDCDB debugger looks for and stores all of its state information in the WDCDB.INI file. The debugger looks for the
file only in the current directory when the debugger is launched. If the debugger was launched from a DOS shell, the search
directory is the current working directory of that shell and not the directory in which the WDCDB.EXE file itself is located.
In most cases, the WDCDB will be launched from TIDE. TIDE also manages the WDCDB.INI file. It creates a new INI file
for a new project, and modifies the existing file when project options are changed.

Once WDCDB is launched, most information in the file is updated automatically by the tool. The remaining information can
be modified by using the Edit Startup Options and Edit Runtime Options menu command to open the options requester.

 September 13, 2013 WDCTools Debugger

 8

CHAPTER 3 Running WDCDB

WDCDB can be run either from a DOS prompt or from windows. The following topics discuss what happens when WDCDB
first starts up and what options are available for altering WDCDB's startup behavior.

Starting WDCDB

When WDCDB first starts, it loads a number of initialization values from the WDCDB.INI file. Among other things, these
options specify whether simulation is required, the position, size and other attributes of windows that are to be opened, and
the source path and file name of the application being debugged. After loading the initialization values, the command line is
parsed to check for any startup options that might override the default options. If any of these options require an action, it will
be taken.

Startup Options

The following startup options are currently available:

-a This option overrides the option to set a temporary breakpoint at main and begin execution till it is
reached. Instead, the Program Counter is set to the program start address.

-c This options sets a new command line.
-d Download only mode. The target file is downloaded, after which the debugger exits.
-r Download/run mode. The target file is downloaded, after which the target program is started and

the debugger exits leaving the program running.
-s Force simulation mode

Loading a Program

There are three ways to load a program into WDCDB. The first method is to specify the name of the program when the
program is started either by running the program from the command line or having the program name specified as part of the
Windows program manager icon.

For example, to debug the program tst.bin, one could simply type:

WDCDB tst

Since the default extension is .bin, the debugger would locate the file tst.bin and load it into memory. If the simulator option
was set in the WDCDB.INI file, it would be loaded into the simulator memory; otherwise, it would be loaded via the debug
port into the target memory. The second method is to specify the name of the program in the WDCDB.INI file using the
Program= entry. This entry will be used if no program name was specified when starting the program.

In this case, if the line in the WDCDB.INI file was:

Program=tst

the, just typing:

WDCDB

would load the program tst.bin.

The last method is to start the debugger with no program specified and then use the menu option File/Load Program. This
opens up a file requester that allows the user to browse the file system and select the file to be loaded and debugged.

 September 13, 2013 WDCTools Debugger

 9

Loading The Symbol Table

When a program is loaded, the debugger automatically searches for a symbol file that has the same root name, but with an
extension of .SYM. This file contains all the symbolic and line number information used by the debugger. Alternatively, the
File/Load Symbols command can be executed. This will open a browser window that will allow the user to select a file that
will be loaded as the symbol file. Only one symbol file may be loaded. Once a valid symbol file has been loaded, the
File/Load Symbols menu command is disabled.

Where to Find the Source Files

The final piece that the debugger needs is the path to the source files themselves. By default, the debugger will search the
current directory for source files. If the Source Path= variable has been initialized in the WDCDB.INI file, the debugger will
first search in the locations specified by the path and if not found, will check the current directory.

For example, if the line:

Source Path=C:\TEST

were in the WDCDB.INI file, then if the debugger were to try and open the file MAIN.C, it would first try
C:\TEST\MAIN.C and if not found, would then try .\MAIN.C before giving up.

Running Programs

There are several ways of running a loaded program. The simplest is to simply start execution by using the Run/Go
command or it's keyboard shortcut F9. The program will continue to run until a breakpoint is encountered or the program is
interrupted by the PC. If the simulator is being used, the program will also be stopped if an illegal memory access occurs.

Stopping the Program

When a program is executing, it can be interrupted by pressing the escape key. This will always work when simulating. If not
simulating, pressing the escape bar will generate an NMI if the appropriate cable connections have been made. The NMI will
interrupt the program and return control to the monitor.

Single Stepping the Program

The program can also be executed either one instruction or one source statement at a time. There are two stepping commands,
Run/Step Into and Run/Step Over with their corresponding keyboard shortcuts, F7 and F8. These functions execute either
one source statement if the active code window is in source mode otherwise it will execute one machine instruction. The
difference occurs on statements that make a call to another function. The Run/Step Into command will single step to the first
statement of the new function. The Run/Step Over command will execute the function being called at full speed and will
stop on the statement following the statement making the function call.

There is one special case that occurs when using the Run/Step Into command in source mode. If the statement about to be
executed calls a function for which there is no source information available, by default, the statement will be stepped over not
into. This is the default, since the compiler generates a number of calls to library functions that normally would not be
stepped into.

However, the default behavior can be modified by setting the Step In Library= flag in the WDCDB.INI file. If this variable
is set, the debugger will step into functions for which no source is available. This flag can be changed by using the
Edit/Runtime Options menu command.

 September 13, 2013 WDCTools Debugger

 10

Breakpoints

Breakpoints are used to stop execution at key points in the program. There are currently four types of breakpoints supported
by WDCDB: one-shot, enabled, disabled, and temporary. Normally a breakpoint is set at a particular instruction address.
The debugger saves the actual instruction at that address and replaces it with either the COP or WDM instruction. The
WDM instruction is used when running in simulation mode, while the COP instruction is used otherwise. Breakpoints
appear transparent to the user and are only actually placed in memory immediately before execution of code.

Breakpoints are displayed in two places. The Breakpoint Window will display a list of all breakpoints except temporary
ones. Each breakpoint will show the address, skip count and status. The skip count is used to create a breakpoint that will be
skipped some number of times before actually interrupting the program. Breakpoints are also displayed in the Code
Window. When an assembly language line or source line is displayed with a breakpoint, the line is displayed in a color
different from the normal background color. The following table shows the type of breakpoint and the corresponding color.

Enabled Red highlighted line in the code window.
Disabled Grey highlighted line in the code window.
One-shot Yellow highlighted line in the code window.

Temporary breakpoints are not displayed in the code window.

Standard Enabled Breakpoints: Enabled breakpoints are the standard breakpoint. By default, they have a skip count of
zero and will return control to the debugger each time they are encountered.

Disabled Breakpoints: Disabled breakpoints provide a mechanism for keeping a set of breakpoint without having all in the
breakpoint table without having all of them active. Disabled breakpoints can be changed to enable or one-shot through the
Breakpoint Window.

One Shot Breakpoint: One-shot breakpoints are special breakpoints that when encountered, return control to the debugger
and then automatically remove themselves.

Note: When a breakpoint is set inside an IRQ function, one should press F9/RUN before the “RTI” instruction for the
Debugger to behave properly. If not, the Debugger will go into a “RUN” mode, but not hit the breakpoint in the IRQ
instruction.

Temporary Breakpoint

There is only one temporary breakpoint. The temporary breakpoint is modified in response to the Run/Go To ... commands.
Once set, the temporary breakpoint remains in effect until either encountered or changed to a different location. For example,
consider the case where the command Run/Go To Here is executed, but before the Here location is reached, a different
breakpoint is encountered. If the Run/Go command is executed, the temporary breakpoint will remain in effect until the Here
location is reached.

Watches

While the debugger is running, it is often useful to examine the values of important variables and memory locations. The
Watch Window provides a useful mechanism for doing this. The Watch Window contains a set of watch expressions. These
expressions are evaluated and the result is displayed. Results can be displayed in a number of different formats and sizes.
Expressions based on C typing will automatically use the correct format and size. Watch expressions that do not evaluate to
a legal value will display a set of dashed lines. If a watch expression makes reference to a dynamically allocated symbol such
as an automatic variable in a C function, it will display a set of dashed lines as well, unless that variable is in the current
active scope.

 September 13, 2013 WDCTools Debugger

 11

CHAPTER 4 Menus

Many of the debugger's features and commands are available through the menu system. Note that many of the menus have
keyboard shortcuts associated with them. At the end of this set of topics there is a topic that summarizes the keyboard
shortcuts associated with the menus.

File Menu

The File Menu contains functions that relate to the loading of programs, symbol tables and the saving and loading of watches
and breakpoints.

Load and Reload Program and Symbols

These commands are used to load a program into the debugger. The Load Program command opens a file requester that can
be used to select the file to load. When a file is loaded using this menu command, the symbol table is automatically searched
for and loaded as well. The Reload Program command is used when a program has previously been loaded using one of the
three methods of loading a program. This menu command will reload the code and data portion of the program being
debugged. The symbol table will not be opened since it usually has already been loaded. The Load Symbols command
opens a file requester to locate a symbol file that will be read to load symbols into the debugger. This function is useful for
cases where the debugger is restarted and takes control of a program already loaded and running. If a symbol table has
already been read, this function is disabled.
See Also: loading a program

Save and Load Desktop

The Load Desktop menu command resets all windows to the positions and sizes specified in the WDCDB.INI file. These
positions are either automatically saved when the program is exited or can be specifically saved by using the Save Desktop
menu command. Note that certain windows including File Windows and Inspector Windows are not saved.

Save Breaks and Watches

The Save Breaks menu command is used to save the current set of breakpoints in the WDCDB.INI file. These breakpoints
are loaded automatically when the debugger is started. Similarly, the Save Watches command is used to save the current set
of watches in the WDCDB.INI file. These watches are also loaded when the debugger is started. To clear either the watches
and/or the breakpoints that are automatically loaded, first delete all watches and/or breakpoints and then execute the Save
Watches and/or Save Breakpoints command.

Exit WDCDB

This menu command terminates the debugger. If any of the auto-save options have been specified, the appropriate
information is written to the WDCDB.INI file before exiting.

Edit Menu

The Edit Menu functions are primarily used for positioning the cursor in File and Code Windows and to specify
the starting position of Code and Data windows.

 September 13, 2013 WDCTools Debugger

 12

Text Search

The Search menu command is used to locate text strings in File Windows and Code Windows. After locating the target
string, the window will be scrolled so that the target string is visible and the cursor will be placed at the start of the target
string. When the command is executed, a requester is opened asking for the target string. After the string is entered, if a
match is found, the cursor will be moved to the target text in the current window. Note that the text search is case
independent. Once a search has been performed, additional searches may be performed using the same target string. These
searches can be either forward from the current cursor position using the Search Next menu command or backward from the
current cursor position using the Search Prev menu command. Note that searches terminate at the beginning or end of the
file and do not wrap.

Code and Data Position

The Code Position menu command is used to position the top-most Code Window. When executed, a requester is opened
asking for an address where the window should be positioned. The requester also allows the code display mode of the
window to be specified using a set of three radio buttons. Likewise, the Data Position command will position the top-most
Data Window to the desired address. The requester also allows the data display mode of the window to be specified using a
set of radio buttons. Note that the position specified can be any regular expression accepted by the debugger.

Edit Startup Options

The Startup Options menu command is used to edit the WDCDB,ini file. The lines that need to be filled in are “Source
Path:”, “Program:”, “Command Line:”, “About time out(MS):”, and “CPU type:”. The three check boxes are “Simulator
enabled”, “Auto-execute till main”, and “Maximize main window”, and can be selected or unselected depending on user
preference.

“Source Path:” is usually the current directory (i.e., “.”) and any higher directory separated by a space (i.e., “. ../higher
directory/”).

“Program:” is the file name being tested with a “.bin” suffix. This is provided by the assembler or compiler.

“Command Line:”, is usually blank.

“About time out(ms):” is enabled when the simulator is off and we are running on a target CPU.

“CPU type:” is either 65C816 or 65C02.

There are “SAVE” and “CANCEL” buttons at the bottom of the Startup Options menu. Select save to modify the
WDCDB.ini file.
The new settings will take effect the next time the WDCDB.EXE is run.

Edit Runtime Options

The Runtime Options menu command is used to edit the WDCDB.ini file. The “Default Radix” box allows the user to
select either decimal or hexadecimal representation as the default for variable data displayed. The “Tab Size” box lets the
user convert the embedded tab characters in the source file to be assigned the number of spaces that will replace the tab
character. The “Options” box has several check boxes that can be selected or unselected, depending on the user preference as
indicated below.

“Show addresses with source lines”
“Show line numbers”
“Step into library functions”
“Auto-save desktop on exit”
“Auto-save watches on exit”
“Auto-save breakpoints on exit”
“Update windows during animate”
The new settings will take effect the next time the WDCDB.EXE is run.

 September 13, 2013 WDCTools Debugger

 13

View Menu

The View Menu is used to open different types of windows to view information about the program being debugged. The
types of windows are listed below:

View Code Menu Command

This command will open a new Code Window. First a requester will be opened that allows the initial position and code
display mode to be specified. Then the window will be opened using the specified position and display mode.

View Data Menu Command

This command will open a new Data Window. First a requester will be opened that allows the initial position and data
display mode to be specified. Then the window will be opened using the specified position and display mode.

View File Menu Command

This command provides a general purpose text file viewer. When executed, a file requester will be opened that allows the file
to be selected. More than one File Window can be opened.

View Registers Menu Command

This command opens the Register Window if not already opened. If already open, the window is made the active window.
Only a single Register Window can be opened.

View Stack Menu Command

This command opens the Stack Window if not already opened. If already open, the window is made the active window.
Only a single Stack Window can be opened.

View Breakpoints Menu Command

This command opens the Breakpoint Window if not already opened. If already open, the window is made the active
window. Only a single Breakpoint Window can be opened.

View Watches Menu Command

This command opens the Watch Window if not already opened. If already open, the window is made the active window.
Only a single Watch Window can be opened.

View Symbols Menu Command

This command opens the Symbols Window if not already opened. If already open, the window is made the active window.
Only a single Symbols Window can be opened.

View Modules Menu Command

This command opens the Modules Window if not already opened. If already open, the window is made the active window.
Only a single Modules Window can be opened.

 September 13, 2013 WDCTools Debugger

 14

View Locals Menu Command

This command opens the Locals Window if not already opened. If already open, the window is made the active window.
Only a single Locals Window can be opened.

Run Menu

The Run Menu is used to control execution of the program being debugged. The operation of each menu item is discussed.

Go Menu Commands

The Go menu commands all cause the processor to begin full speed execution. The different commands provide options to
control where the processor begins execution and where it ends execution. The unqualified Go menu command causes the
processor to begin execution at the current program counter address and continue till stopped by a breakpoint or an
interruption from the debugger. The Go To Here menu command sets a temporary breakpoint on the line currently under the
cursor. Thus, to execute to a specific line without setting a permanent breakpoint, simply position the cursor on that line and
execute the Go To Here menu command. The Go To ... menu command is similar to the Go To Here menu command
except that a requester is opened and a temporary breakpoint is set at the address specified in the requester. The Go From
Here menu command changes the program counter to match the address of the line currently under the cursor. Then,
execution begins from that address. The Go From ... menu command opens a requester and allows the starting address of the
processor to be explicitly specified by typing an expression into the requester. Processor execution begins from the specified
address.

Single Stepping Menu Commands

There are several different single stepping commands. These commands cause the processor to execute a single line
of code. The Step commands cause the processor to execute a single line of code and then return control to the debugger.
There are two basic forms of this command called Step Into and Step Over. A Step Into command executes the current line
of code and 'steps into' any functions that are called by the line being executed. The Step Over command executes the current
line of code and 'steps over' any functions that are called by the line being executed. The functions are executed at full speed
and single stepping continues after the function returns. There is one exception to the Step Into command. If there is no
source file or source information for the function being called, it is assumed that the function is a library function and an
implicit Step Over is performed. There are two ways to change this behavior. First, the code display mode can be switched
into mixed or raw assembly mode and the Step Into will operate as expected. Second, the Step Into Library variable in the
WDCDB.INI file can be set that will cause all Step Into functions to always step into the function. There are two additional
commands Animate Into and Animate Over that will continuously execute Step Into and Step Over commands
respectively. The animated stepping will continue until a breakpoint is reached or the animation is stopped by pressing the
space bar. The last command, Skip, also operates on single lines of code. However, this command simply changes the
program counter of the processor to point to the next line of code without executing it.

Restart Program Menu Command

This command resets the program counter to the start address of the program and resets any other settings. The processor is
not started. Note that any initialized data not copied from ROM during startup may contain corrupted data.

Memory Menu

The Memory Menu contains some general utility commands to inspect and manipulate memory. The operation of each menu
item is discussed.

 September 13, 2013 WDCTools Debugger

 15

Inspect Memory Menu Command

The Inspect Memory menu command is used to examine C typed variables especially, structures, unions and arrays. When
executed, a requester is opened that allows an expression to be entered. The expression is parsed and the result is displayed in
an Inspector Window.

Fill Memory Menu Command

The Memory Fill menu command is used to fill blocks of memory with constant values. When executed, a requester is
opened. The user then fills in the start address, end address and a sequence of up to 10 bytes, words, or long words with
which to fill memory. The size of the sequence items is specified using the radio buttons in the requester.

For example, to fill a block of memory from $100 to $200 with alternating long words of $ffffffff and $00000000:

Start: $100
End: $200

Fill with: $ffffffff $00000000
Size:

o Byte
o Word
x Long

When the Okay button is pressed, the memory block is filled.

Search Memory Menu Command

The Memory Search menu command is used to search a range of memory for a specific sequence. When executed, a
requester is opened that allows the user to specify the start and end address of the range of memory to be searched. There is a
set of radio buttons that control how the search target is interpreted, either as a sequence of bytes, words or long words.
Finally, the target sequence itself can be entered with as many as ten entries.

For example, to search for the word sequence $1234 $5678 $9000 in the memory range from $100 to $200, the
following setup would be used:

Start Address: $100
End Address: $200

Search: $1234 $5678 $9000
Size: o Byte

x Word
o Long

When the Okay button is pressed, the memory is searched. If a match is found, an info requester giving the address will be
displayed. If no match is found, an error requester will be displayed.

Compare Memory Menu Command

The Memory Compare menu command is used to compare two blocks of memory. When executed, a requester is opened
that allows the user to specify the start and end address of the first block and the start address of the second block. The length
of the second block is automatically set to the length of the first block.

 September 13, 2013 WDCTools Debugger

 16

For example, to compare the two blocks of memory at $100 and $800 both of size $80, the following setup would be used:

Start: $100
End: $180

Compare with: $800

When the Okay button is pressed, the two memory bocks are compared. If no difference is found, an info box is displayed to
that effect. If a difference is found, an info box giving the address of the difference is displayed.

Move Memory Menu Command

The Memory Move menu command is used to copy a block of memory from one location to another. When the command is
executed, a requester is opened that allows the user to specify the start and end address of the block to be moved and the
destination address.

For example, to take the block of memory from $100 to $200 and copy it to address $800, the following setup would be used:

Start: $100
End: $200

Move to: $800

When the Okay button is pressed, the first block of memory will be copied to the address specified.

Read Memory from File Menu Command

The Memory Read menu command reads data from a disk file and stores it into memory. When the command is executed, a
requester is opened that asks for the name of the file and the address to store the data in the file.

For example, to load the file "tstdata.bin" at address $100, the following setup would be used:

Start: $100
File: tstdata.bin

Browse

When the Okay button is pressed, the specified file will be opened and the binary contents of the file will be loaded starting
at the specified address. The Browse can be pressed to open a file requester that can be used to find the desired file.

Write Memory to File Menu Command

The Memory Write menu command will write a range of memory as a binary image to a disk file. When executed, the
command will open a requester asking for the start and end address of the block of memory to be written and the name of a
file to write the data to.

For example, to write the block of memory from $100 to $200, the following setup would be used:

Start: $100
End: $200

File: data.bin

When the Okay button is pressed, the file will be opened, the specified range of memory will be written to the file and the
file will be closed.

 September 13, 2013 WDCTools Debugger

 17

Empty Cache Menu Command

The Memory Empty Cache menu command is used to clear the memory cache. This forces the debugger to invalidate all
cache buffers and fetch all memory data from the target. The cache is normally only used on hardware systems with areas
that are marked as ROM,

Breakpoint Menu

This menu controls the setting of breakpoints. The commands are:

Toggle Breakpoint Menu Command

The Breakpoint/Toggle menu command toggles the type of breakpoint currently under the cursor in Code Windows and
Breakpoint Windows. The breakpoints toggle between enabled (red bar), disabled (grey bar), oneshot (yellow bar) and no
breakpoint.

Set Breakpoint Menu Command

The Breakpoint/Set menu command will set a permanent breakpoint at the current cursor position in an active Code
Window. In a Breakpoint Window, it will open a requester allowing an expression to be entered that will be evaluated to
an address. There is also a set of radio buttons that allows the type of breakpoint to be specified. (Enable, Disable, and
Oneshot) Finally, a skip count can be specified that indicates how many times the breakpoint should be skipped before
returning control to the debugger.

Delete Breakpoint Menu Command

The Breakpoint/Delete menu command is used to delete a breakpoint. The command has two different modes of execution
depending on the current active window and cursor position. If the active window is a Code Window, the command will
delete the breakpoint under the cursor. If there is no breakpoint on the current cursor line, no action will be taken. If the
active window is a Breakpoint Window, the command will delete the currently selected breakpoint. If any other window is
active, no action is taken.

Delete All Breakpoints Menu Command

The Breakpoint/Delete All menu command will clear all breakpoints of all types. Note that breakpoints saved in the
WDCDB.INI file will not be cleared unless the Save Breakpoints menu command is executed after clearing all breakpoints.

ICD Breakpoint

The ICD breakpoint allows the debugging of a target system. This allows a breakpoint on a READ or WRITE with matching
or un-matching data comparison. The ICD is useful in debugging “memory leaks” and unexpected variables being modified
other than by a direct “store” instruction. It also helps find pointers or indices that have gone astray.

Watch Menu

The Watch Menu implements the creation, deletion and control of the Watch Window. Entries in the watch window are
used to monitor the status of key variables and memory locations.

 September 13, 2013 WDCTools Debugger

 18

Add Watch Menu Command

The Watch/Add menu command is used to create a new watch entry in the Watch Window. When executed, the command
will open a requester that asks for an expression to use for the watch, the size and the type of display desired.
The choices for display size are Byte, Word and Long. These only affect the Binary, Decimal and Hexadecimal display types.
The choices for display type are Ascii, Binary, Decimal, Hex, Float and C Type.

If the Watch Window is active when the command is given, the new watch will be inserted before the currently selected
watch. Otherwise, the new watch will be added to the end of the list of watches.

Change Watches Menu Command

The Watch/Change menu command is used to modify watches. It has two different modes of operation. If the current
window is the Watch Window, then the currently selected watch will be modified. If any other window is active, a requester
is opened that asks for either the expression of the watch to change or the number of the watch as listed in the Watch
Window. Once the watch is selected, a requester is opened that allows either the watch expression or the watch value to be
modified.

Delete Watch Menu Command

The Watch/Delete menu command is used to delete watches. It has two different modes of operation. If the current window
is the Watch Window, then the currently selected watch is deleted. If any other window is active, a requester is opened that
asks for either the expression of the watch to delete or the number of the watch as listed in the Watch Window.

Delete All Watches Menu Command

The Watch/Delete All menu command will delete all watches currently in use.
Note that watches saved in the WDCDB.INI file will not be cleared unless the File/Save Watches menu command is
executed after clearing all watches.

Windows Menu

The Windows Menu controls the sub-windows of the debugger. At the moment, only one command is active, but there will
be more added in future versions.

Close Window Menu Command

The Window/Close menu command is used to close the current sub-window of the debugger. This command cannot be used
on the main debugger window. Use the File/Exit menu command to close the main window.

Help Menu

The Help Menu gives access to this help file and gives some information about this program's version.

Help Contents Menu Command

The Help/Contents menu command opens the debugger help file and shows the contents page. If this command displays an
error, make sure that the WDCDB.HLP file is located in the same directory that the debugger itself was executed from.

 September 13, 2013 WDCTools Debugger

 19

About Menu Command

The Help/About menu command displays a requester that gives the current version of the debugger along with some
additional information. Pressing any key or the mouse will close the requester.

Status Window Menu Command

The Help/Status Window menu command opens the Status Window if closed. Otherwise it will make it the active window.
This displays the status of the WINIO.DLL, as well as the download of the “bin” file blocks to the developer board, if
attached. It also displays internal testing information.

Notes: You can only have one (1) Status Window open at a time!
 You can only have one (1) Symbol Window open at a time!
 You can only have one (1) Stack Window open at a time!
 You can only have one (1) Register Window open at a time!
 You can only have one (1) Breakpoint Window open at a time!
 You can only have one (1) Modules Window open at a time!
 You can only have one (1) Watch Window open at a time!
 You can only have one (1) Locals Window open at a time!

Verbose Status Toggle Menu Command

The Help/Verbose Status Toggle menu command is primarily used for internal testing purposes. It causes additional
information to be printed to the status window during certain debugger operations and can be ignored by the user.

Menu Shortcut Keys

The following is a summary of the menu shortcut keys.

Alt+X File/Exit
Sh+F3 Edit/Copy
Sh+F4 Edit/Paste
Ctl+F Edit/Search
Ctl+N Edit/Search Next
Ctl+U Edit/Search Prev
Alt+C Edit/Code Position
Alt+D Edit/Data Position
F9 Run/Go
F4 Run/Go To Here
F7 Run/Step Into
F8 Run/Step Over
Alt+S Run/Skip

Ctl+I Memory/Inspect
Ctl+F3 Memory/Empty Cache
F2 Breakpoint/Toggle
Alt+F2 Breakpoint/Set
Sh+F2 Breakpoint/Delete
Ctl+F2 Breakpoint/Delete All
F1 Watch/Add
Alt+F1 Watch/Change
Sh+F1 Watch/Delete
Ctl+F1 Watch/Delete All
Alt+F3 Windows/Close Current
Alt+Y Help/Verbose Status Toggle

 September 13, 2013 WDCTools Debugger

 20

CHAPTER 5 Windows

The display is maintained as separate windows within the main WDCDB window. All windows can be opened, closed and
moved. Most can be resized as well.

Status Window

The Status Window contains information relating to the current state of the debugger. Messages are displayed as programs
are loaded and when the verbose status mode is enabled, during any reads or writes of the memory.

Symbols Window

The Symbols Window displays a list of all global symbols loaded from the program's symbol file. Each symbol is displayed
on a separate line with the address or value of the symbol displayed as well. The symbol table can be displayed in either
alphabetical or numerical order. To switch between the two, use the F3 key. Hitting the enter key on a code symbol will
position the topmost Code Window to the corresponding address. If the symbol is a data symbol, the topmost Data Window
will be positioned to the corresponding address.

Data Window

The Data Window is used to examine the memory of the target processor. The memory can be displayed in a number of
different formats: byte, word, long word, float, and double. In the non-floating point modes, the bytes are also displayed as
ASCII characters with non-printing characters replaced by a period. The window can be switched between modes by using
the F3 function key. The window can be positioned by scrolling or by using either the generic Alt+P position command or
the Data Window specific Alt+D position command. These commands will open a requester and allow an expression to be
entered that will be evaluated and the resulting value will be used as the new window starting position. The requester also has
a set of radio buttons for setting the window display mode.

The requester also has a check box that when set will cause the window to be anchored. An anchored data window will
always reposition to the location specified by the anchor expression. For example to keep track of values placed on the stack,
a data window can be anchored to the expression +1 that will force the window to always be positioned to show the top value
on the stack. Any valid expression can be used to anchor a Data Window. Memory in a Data Window can be modified
simply by positioning the cursor to the memory to be changed and typing the new values. If the window is in one of the
floating point modes, positioning the cursor and pressing any key will open a requestor allowing the new value to be entered.
There can be as many Data Windows open as needed.

Code Window

The Code Window displays the program code being debugged. The program can be displayed in source mode, mixed
assembly and source, or just plain assembly code. Breakpoints are displayed as a different color background. The current
program counter is shown by changing the color of the line. If a line is marked by both the program counter and a breakpoint,
the program counter indicator occurs on the first part of the line, while the breakpoint indicator marks the remainder of the
line.

Breakpoint Window

The Breakpoint Window shows the current set of breakpoints. Each breakpoint is displayed on its own line and shows the
address of the breakpoint, the current skip count, the type of breakpoint and a symbol name if one is associated with the
address. Within the window, breakpoints can be added and removed by using the Insert and Delete keys or by using the
menu functions in the Breakpoint Menu. In addition, hitting the Return key will position the Code Window to the address
of the breakpoint.

 September 13, 2013 WDCTools Debugger

 21

Modules Window

The Modules Window displays a list of all files that were used when creating the target program. Selecting a file name and
hitting return or double clicking will position the top-most code window to the beginning of that file.

Watch Window

The Watch Window shows the current value of any expressions that have been placed in the Watch Window. These values
are updated each time the target processor stops executing and control returns to the debugger.

Locals Window

The Locals Window shows the names, types and values of local variables and arguments to the current C function. Each line
shows the variable name, the address, the value in hex and decimal and finally, the type. If the Return key is pressed, the
selected variable will become the target of an Inspect Window. If the Space key is pressed, a requester will be opened
showing the current value of the local variable and allowing the value to be changed.

In the Locals window, the:
1st column is the variable name
2nd column is the address of the variable
3rd column is the data in hex for this variable or a pointer address
4th column is the data in decimal
5th column is the typedef of the variable

Inspector Window

The top of the window shows the expression and the address associated with the expression. The remainder of the window
shows the value of the expression. If the expression represents a scalar quantity, a single line will display the type and value.
Hitting return on a member of an array or structure will open a new inspect window using the current symbol to determine
the new expression.

File Window

The File Window is used to browse through text files, usually other than source code files. Files are displayed and can be
scrolled and searched through.

Register Window

The register window displays the current state of the CPU registers, the current cycle counter and the source and destination
of the current active instruction.

Definitions are as follows:

 A: Accum
 X: X Register
 Y: Y Register
 PB: Program Bank Register
 PC: Program Counter
 DB: Data Bank
 DP: Direct Page
 SP: Stack Pointer

 September 13, 2013 WDCTools Debugger

 22

 SR: Status Register
 ENVMXDIZC: (If the letter is capital, then the bit is a “1”)
 S:
 D:
 C: Current Cycle Counter

Stack Window

The Stack Window displays the calling sequence used to reach the current function if that calling sequence consists of C
functions. Normally, when a C function is called, it saves information on the stack from the previous function. This
information allows the debugger to examine and parse the information on the stack and create a list of functions that have
been called in the order that they were called. In addition, each function is displayed with a list of the parameters associated
with that function.

To open a Stack Window, use the menu command View/Stack. The Stack Window will show the calling sequence with the
current function at the top of the window. It is possible for no functions to be displayed in the window. This can be caused by
several conditions. The two most common causes are that the current function is not a C function or that the function
preamble code has not yet been executed. Besides showing a trace of how the current function was reached, the Stack
window also allows more detailed viewing of the calling sequence. Selecting a particular function from the list and either
pressing the Return key or double clicking with the mouse will position the code window to the line of code that made the
call associated with that entry.

 September 13, 2013 WDCTools Debugger

 23

CHAPTER 6 Debug File Format

Introduction

This document describes the WDC symbolic debugging format. The information is provided as a service and WDC reserves
the right to make changes as are deemed necessary.

Creating the Symbol File

The symbol file is created by the linker and is used during debugging to properly locate and interpret the program. The
symbol file can contain both symbolic and source-level debugging information. Specifying the `-g’ and `-sz’ options to the
linker generates the information that is placed in a file with a ‘.sym’ extension.

Basic Information

There are two files that provide additional information. The header file 'obj816.h' (located in WDC_SDS\ZFORMAT)
contains definitions of all the structures and constants. The source file 'zsym.c' (located in WDC_SDS\ZFORMAT) is a
program that will display the information in a symbol file. It can be used as an example of how to read and parse a symbol
file. All words and long words are written with the low byte first.
To view the .SYM file, run the program WDCSYM.EXE located in WDC_SDS_BIN. Please refer to Chapter 10 of the
Assembler/Linker manual for more information on how to use WDCSYM.EXE.

Basic File Structure

The basic structure of the file is outlined as follows:

File Header
Module 1 Information

Section 1 Information
…
Section N Information
Line Record Information
Symbol Record Information

Module 2 Information
…
Module N Information
…
Global Symbol Records
String Table
Auxiliary Record Table
Source File Information
End of file

File Header Structure

 The symbol file begins with a header structure that contains

Signature word $2345
 Version word
 Number of sections word
 Symbol records offset long word
 Number of symbol records word
 Auxiliary table offset long word

 Number of auxiliary table entries word
 String table offset long word
 Size of string table long word
 Source files offset long word
 Number of source files word
 Number of modules word

 September 13, 2013 WDCTools Debugger

 24

Module Information

Each module record contains a long word string index giving the offset to the module name and a word specifying the
number of sections.

Section Information

Each section record within a module record contains a single word specifying the section number and a long word specifying
the starting address of the section. This is followed by a long word specifying the size of the section and a word specifying
the number of line records in this module.

Line Record Information

Line records are only included if code is generated on that line. Each line record consists of:

 A long word specifying the address of the current line.
A word specifying the source line number.
A word specifying the number of bytes associated with this line.
A byte specifying the source file number of this line record.
A byte specifying the LONGA/LONGI status at the beginning of the current line.

Symbol Record Information

Each module contains a number of symbol records. The number is specified by a word that immediately follows the Line
Record Information. The definitions of the fields in a symbol record vary depending on the symbol class. See below.

The structure for each symbol record is:

 A long word index.

 A long word value.
 A byte class.

 A byte flags.
 A word auxiliary index.

Global Symbol Information

Following the last module is the global information for the program. For each global symbol, there is a symbol record as
defined above.

Global String Table

All modules use the global string table. The linker collects all strings and concatenates them into one large table. Multiple
occurrences of a string are eliminated to save space.

Auxiliary Record Table

Following the string table, is the auxiliary record table. This table contains information collected by the linker from all
modules. The auxiliary information includes C language typing information.

 September 13, 2013 WDCTools Debugger

 25

Source File Record Information

Then for each source file there is a long word string index to the file name and a word specifying the number of physical lines
in the source file.

The following is a description by class type.

 strindex ----- C_FILE ----- index of next file

This record indicates a source file. The strindex is the name of the file and the aux index is the index within this symbol
record table of the next C_FILE record type. The last file record will have an aux index of 0.

linNum address C_BLOCK ----- index of eblock

This record indicates the start of a code block. Usually this is generated in C by a '{' character. The linNum is the source file
line number. The address is the code address associated with the first instruction of the block. The aux index is the index of
the end of block symbol record.

linNum address C_EBLOCK ----- index of start block

Paired with C_BLOCK, this record indicates the end of a nested block. The aux index points back to the associated start of
block.

strindex size C_STRTAG ----- serial

This record defines the name, size and serial number associated with a particular structure. The strindex is an offset into the
global string table with the name of the structure definition. If the struct is unnamed, a name of the form 'fakeN_' is
automatically generated. The size is the size of the structure in bits. The serial number is an internal value used by the linker
to prevent placing information on unreferenced structures into the symbol file.

strindex offset C_MOS ----- typIndex

This record defines the attributes of a member of a structure. The strindex is the offset of the name of the member in the
global string table. The offset is the offset in bits of the member. The typIndex is the index into the global auxiliary records
table that defines the type of the member.

strindex offset C_FIELD fldlen typIndex

This record defines the attributes of a bit field member of a structure or union. The strindex is the offset of the name of the bit
field in the global string table. The offset is the offset in bits of the bit field. The typIndex is the index into the global
auxiliary records table that defines the type of the bit field. The flags field defines the field length.

----- ----- C_EOS ----- index of next tag

This record defines the end of a structure, union or enum. The aux index is the index of the next structure, union or enum.

strindex size C_UNTAG ----- serial

This record defines the name, size and serial number associated with a particular union. The strindex is an offset into the
global string table with the name of the union definition. If the union is unnamed, a name of the form 'fakeN_' is
automatically generated. The size is the size of the union in bits. The serial number is an internal value used by the linker to
prevent placing information on unreferenced unions into the symbol file.

 September 13, 2013 WDCTools Debugger

 26

strindex offset C_MOU ----- typIndex

This record defines the attributes of a member of a union. The strindex is the offset of the name of the member in the global
string table. The typIndex is the index into the global auxiliary records table that defines the type of the member.

strindex size C_ENTAG ----- serial

This record defines the name, size and serial number associated with a particular enum. The strindex is an offset into the
global string table with the name of the enum definition. If the enum is unnamed, a name of the form 'fakeN_' is
automatically generated. The size is the size of the enum in bits. The serial number is an internal value used by the linker to
prevent placing information on unreferenced enums into the symbol file.

linNum addr C_FUNC ----- index of efunc

This record defines the beginning of a function. The linNum is the physical source line associated with the function. The addr
is the program counter location associated with the function. The aux index is the index of the end of function symbol record.

 localOffset argOffset C_FRAME ----- -----

This record always follows a C_FUNC record and describes the offset from the current DP setting to the start of the locals
and arg variable areas. This will vary depending on the memory model being used and the number of temporary variables
used by the compiler.

linNum addr C_EFUNC ----- index of next func

This record defines the end of a function. The linNum is the physical source line associated with the end of the function. The
addr is the address of the next byte after the last function code byte. The aux index is the index of the next function start
record or zero if there are no more.

strindex value C_EXT funcflg typIndex

This record defines an external symbol and is found in the global symbol record table. The strindex is the offset of the
symbol name in the global string table. The value is the address of the symbol. The funcflg is a 1 if the symbol denotes a
function, otherwise it is zero to denote a data label. The typIndex is an offset into the global auxiliary record table that gives
information on the type of the symbol.

strindex localOffset C_AUTO ----- typindex

strindex argOffset C_ARG ----- typIndex

These records define local and argument variables. The strindex is the offset into the global string table of the symbol name.
The typIndex is the index into the auxiliary record table to the type definition for the variable. The localOffset and argOffset
are the offset of the variable from the beginning of the local and arg area respectively. The local and arg areas are defined by
the C_FRAME record associated with the current function. Thus the address of a local variable will be the current DP
register value + the C_FRAME localOffset value + the C_AUTO localOffset value.

 September 13, 2013 WDCTools Debugger

 27

Auxiliary Record Table Format

The auxiliary record table is a table of long words. Each long word is interpreted as follows:

The low four bits of each type indicates the base type as defined in the enum:

enum { T_NULL, T_VOID, T_SCHAR, T_CHAR, T_SHORT, T_INT16, T_INT32,
T_LONG, T_FLOAT, T_DOUBLE, T_STRUCT, T_UNION,
T_ENUM,T_LDOUBLE, T_UCHAR, T_USHORT, T_UINT16, T_UINT32,
T_ULONG };

The remaining 28 bits specify derived types of the base type. The bits are arranged as nine sets of three bits each. Each three-
bit set defines one of the following derived types:

enum { DT_NON, DT_PTR, DT_FCN, DT_ARY, DT_FPTR, DT_FFCN };

A derived type of DT_NON signals the end of the derived types.

For example if the base type is T_SHORT and the first derived type is DT_PTR and the second derived type is DT_ARY,
then the value would be:

 DT_SHORT | (DT_PTR << 4) | (DT_ARY << (4+3))
 4 | (1 << 4) | (3 << 7)
 0x194

Certain base and derived types make use of additional following records.

The T_STRUCT, T_UNION and T_ENUM records are followed by a record that contains the module number of the module
which first defined the type in the low 16 bits and the record number within the module's record symbol table in the high 16
bits. This allows the definition to occur only once regardless of how many modules might include the same declaration.
Similarly, a record containing the dimension for the array follows the DT_ARY derived type. As many dimension records are
generated as there are DT_ARY derived types. In the case where the type is an array of structures, the struct record is always
first followed by any dimension records.

Common Operations

Finding a function by name:

Search the global symbol table for C_EXT records with the funcFlag set to 1.
Do a string compare on the names.

Finding a function by address:

 For each module, scan each section to see if it contains the address.
 Once a module is found, scan the symbol records for the first C_FUNC record.
 Then, for each C_FUNC record:
 Compare the target address against the start address and the address defined by the C_EFUNC record.

 The C_EFUNC record can be easily found by using the AUX field of the C_FUNC record.

 September 13, 2013 WDCTools Debugger

 28

 If the target address falls within the range, the function has been found. To determine the name

 of the function, scan the global symbol table for a C_EXT record with the funcFlag set
 and the same VALUE field as the C_FUNC record's VALUE field.

 If not in the range, skip to the next C_FUNC record using the AUX field of the C_EFUNC record.

 Continue till the AUX field of the C_EFUNC record is zero.

Finding the source line associated with an address:

 First, find the function as defined above.
 Scan backwards through the symbol record table until a C_FILE record is found.
 Then, scan the line record table for this module until a line containing the address is found.

 September 13, 2013 WDCTools Debugger

 29

CHAPTER 7 Technical Notes

Interrupt Debugging Strategy

Using the “signal” and the “raise” functions to debug an Interrupt while using the simulator.

Many times we need to test software while the hardware is being designed. It is very difficult to debug Interrupt code without
the actual hardware and even with the hardware it can be confusing. When we actually take the interrupt, it needs to run
without being slowed down. We can accomplish simple testing of the actual execution in non-real time by using the “signal”
and “raise” function calls.
The “signal” function defines the type interrupt we are to assign the interrupt. The “raise” function calls the interrupt type.
(The type of interrupt allowed is defined in <signal.h>
The “signal” and the “raise” functions are also good for trapping “Floating Point Errors” (FPE).

Example code:

// command line: WDC816CC -ms -bs -lt -sop.c

typedef unsigned char uchar;
typedef unsigned char U8;
typedef unsigned short U16;
typedef unsigned long U32;

#include <signal.h>

//Gloable variable
int timer_tic = 0;

void *timer_code(int sig)
{

//if (sig == SIGINT)
 timer_tic++;
} // End of the Function Timer_code()

void main(void)
{
int error_flag = 0;
int i;
int result =0;

 if (signal(SIGINT, timer_code) != SIG_ERR)
 error_flag = 1; //Error condition

 for (i=0; i<3; i++) {
 if (raise(SIGINT) ==0)
 result = timer_tic;
 else
 result = timer_tic;
 }
} // End of main()

 September 13, 2013 WDCTools Debugger

 30

INDEX

anchored, 25
Assembly Language Program Debugging, 9

Breakpoint Menu, 21, 25
Breakpoint Windows, 21
-bs option, 9

C Language Program Debugging, 9
Code Windows, 16, 21

Debug File Format, 29

Edit Menu, 15
Edit Runtime Options, 10, 16
Edit Startup Options, 10, 16

File Windows, 16
File/Load Program, 11
File/Load Symbols, 12

-g option, 9

Help Menu, 22

ICD Breakpoint, 21

Memory Menu, 18
Menu Shortcut Keys, 23

Alt+C Edit/Code Position, 23
Alt+D Edit/Data Position, 23
Alt+F1 Watch/Change, 23
Alt+F2 Breakpoint/Set, 23
Alt+F3 Windows/Close Current, 23

Alt+X File/Exit, 23
Alt+Y Help/Verbose Status Toggle, 23
Ctl+F Edit/Search, 23
Ctl+F1 Watch/Delete All, 23
Ctl+F2 Breakpoint/Delete All, 23
Ctl+F3 Memory/Empty Cache, 23
Ctl+I Memory/Inspect, 23
Ctl+N Edit/Search Next, 23
Ctl+P Edit/Search Prev, 23
F1 Watch/Add, 23
F2 Breakpoint/Toggle, 23
F4 Run/Go To Here, 23
F7 Run/Step Into, 23
F8 Run/Step Over, 23
F9 Run/Go, 23
Sh+F1 Watch/Delete, 23
Sh+F2 Breakpoint/Delete, 23
Sh+F3 Edit/Copy, 23
Sh+F4 Edit/Paste, 23

Run Menu, 18

tst.bin, 11

View Menu, 17
View/Stack., 27

Watch Menu, 21
WDCDBUG, 7
WDCDBUG.INI, 9
WDCxxAS, 9
WDCxxCC, 9
Windows Menu, 22

	CHAPTER 1 Overview
	Welcome to the Wonderful World of WDCDB

	CHAPTER 2 Before Running WDCDB
	C Language Program Debugging
	Assembly Language Program Debugging
	Linking for Debugging
	The WDCDB.INI File

	CHAPTER 3 Running WDCDB
	Starting WDCDB
	Startup Options
	Loading a Program
	Loading The Symbol Table
	Where to Find the Source Files
	Running Programs
	Stopping the Program
	Single Stepping the Program
	Breakpoints
	Temporary Breakpoint
	Watches

	CHAPTER 4 Menus
	File Menu
	Load and Reload Program and Symbols
	Save and Load Desktop
	Save Breaks and Watches
	Exit WDCDB

	Edit Menu
	Text Search
	Code and Data Position
	Edit Startup Options
	Edit Runtime Options

	View Menu
	View Code Menu Command
	View Data Menu Command
	View File Menu Command
	View Registers Menu Command
	View Stack Menu Command
	View Breakpoints Menu Command
	View Watches Menu Command
	View Symbols Menu Command
	View Modules Menu Command
	View Locals Menu Command

	Run Menu
	Go Menu Commands
	Single Stepping Menu Commands
	Restart Program Menu Command

	Memory Menu
	Inspect Memory Menu Command
	Fill Memory Menu Command
	Search Memory Menu Command
	Compare Memory Menu Command
	Move Memory Menu Command
	Read Memory from File Menu Command
	Write Memory to File Menu Command
	Empty Cache Menu Command

	Breakpoint Menu
	Toggle Breakpoint Menu Command
	Set Breakpoint Menu Command
	Delete Breakpoint Menu Command
	Delete All Breakpoints Menu Command
	ICD Breakpoint

	Watch Menu
	Add Watch Menu Command
	Change Watches Menu Command
	Delete Watch Menu Command
	Delete All Watches Menu Command

	Windows Menu
	Close Window Menu Command

	Help Menu
	Help Contents Menu Command
	About Menu Command
	Status Window Menu Command
	Verbose Status Toggle Menu Command
	Menu Shortcut Keys

	CHAPTER 5 Windows
	Status Window
	Symbols Window
	Data Window
	Code Window
	Breakpoint Window
	Modules Window
	Watch Window
	Locals Window
	Inspector Window
	File Window
	Register Window
	Stack Window

	CHAPTER 6 Debug File Format
	Introduction
	Creating the Symbol File
	Basic Information
	Basic File Structure
	File Header Structure
	Module Information
	Section Information
	Line Record Information
	Symbol Record Information
	Global Symbol Information
	Global String Table
	Auxiliary Record Table
	Source File Record Information
	Auxiliary Record Table Format
	Common Operations

	CHAPTER 7 Technical Notes
	Interrupt Debugging Strategy

	INDEX

