

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 1

SOFTWARE DEVELOPMENT SYSTEM

ASSEMBLER/LINKER/LIBRARIAN

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 2

THIS PAGE LEFT INTENTIONALLY BLANK

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 3

Table of Contents

CHAPTER 1 Introduction ... 9
Assembler ...9
Linker ...9
Librarian ..9
Manual organization..10

CHAPTER 2 Files ... 11
Source files..11
Macro files ..11
Object modules and libraries ..11
Output files ...11

CHAPTER 3 Program Structure .. 13
Modules...13
Sections ...13
Pre-defined sections ...14
Absolute versus Relative ...14
Section location ..15
Copying data ..15
Startup.ASM ..16
Nintendo development ...18

CHAPTER 4 Statement Syntax... 19
Comments ...19
Labels ..19
Operation..19

Processor Instructions ...20
Assembler Directives ...20
Section Directives ...20
Macro Calls ..20

Operands ..20
Operators..20
Unary Operators ..21
Binary Operators ...21
Comparison Operators..21
Operator Precedence Table ..21
Numbers..22
Addresses ..22
Immediate Operands ...23
Character Constants and Strings ...23
Program Counter ...23
Assembler Addressing Modes ...24

CHAPTER 5 Macros and Conditionals.. 25
Macros ..25

Macro Definition ..25
Calling a Macro..25
Redefining Assembler Directives and Opcodes ...26
Macro Labels..26

Conditional assembly...27
CHAPTER 6 WDCxxAS (ASSEMBLER).. 29

Running the Program ..29
Option Summary ...29
Option Descriptions ...29

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 4

CHAPTER 7 WDCLN (LINKER) .. 33
Running the Program ..33
Option Summary ...34
Option Descriptions ...35
Quick Linking ..40
Technical Notes ..41

Considerations for when CODE section exceeds bank 00 ..41
Notes on the starting address for each section in the linker output...41
Notes on creating a new DATA section ..42

CHAPTER 8 WDCLIB (LIBRARIAN).. 43
Running the Program ..43
Option Summary ...43
Option Descriptions ...43

CHAPTER 9 WDCOBJ (EXAMINE OBJECT MODULES) .. 45
Running the Program ..45
Option Summary ...45
Option Descriptions ...45

CHAPTER 10 WDCSYM (EXAMINE SYMBOL TABLES) .. 47
Running the Program ..47
Option Summary ...47
Option Descriptions ...47

CHAPTER 11 Assembly Opcodes... 49
Standard Instructions..49
Alternate Instructions..49
W65C02S Instructions...50
Addressing Modes..50

CHAPTER 12 Assembly Directives .. 55
File and Symbol Control ...55
Parsing Control ..61
Data Definition Control...65
Macro Control..71
Conditional Control...74
Listing Control ...77

Appendix A Assembler Error Messages .. 82
Fatal Errors ..82

Premature end of file in conditional. ..82
Modules must start and end in original file!..82
Unable to start new module without ENDMOD. ..82
Need module name here. ...82
More than one input file specified! ...82
More than one output name..82
Out of memory!..82
No input file specified! ...82
Can't open input file <FILE>. ..82
Can't open output file <FILE>. ..82
Can't open listing file <FILE>. ...83
Too many -I options. ..83
Includes nested too deep..83
Unable to reopen 'FILE' after INCLUDE!..83
Input line longer than 512 characters! ...83
Missing MACEND or ENDM in macro definition. ...83
Macro nested more than 256 deep! ..83
Macro arguments too long! ...83

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 5

Reference to undefined macro argument! ...83
Expanded macro line longer than 512 characters! ...83
REPT line longer than 512 characters!..83
Missing ENDREPT in REPT definition...83
Error writing to object file. ...84
Label value different between pass 1 and 2! ..84
Error writing to listing file. ...84
Exceeded maximum of 256 sections! ..84
Max of 500 nested sections exceeded!...84
Imbalance in nested sections. ..84

Non-Fatal Errors ...84
Need symbol name here! ...84
Missing comma and second argument. ..84
Conditional requires symbol name...84
Unknown symbol in conditional. ..84
This conditional only valid inside a macro. ...84
Need start,size for INSERT! ...85
Couldn't open binary file 'FILE'!...85
Symbol required...85
Label is required for directive. ...85
Label type redefined. ...85
Can't redefine type of label. ..85
Fully resolved expression required for EQU by Pass 2! ...85
Too many global equates. ..85
Page length must be at least 10 lines! ...85
Page width must be >= 40 and <= 132! ..85
Too many lines on top! ..85
Missing termination character 'X'! ..86
Illegal outside of macro definition!...86
Illegal outside of rept definition! ..86
Only valid delimiters are: {, (, and [. ..86
MACEXIT illegal outside of macro definition! ...86
Conditional ELSEIF directive out of place..86
Need conditional end directive here. ..86
Conditional ELSE directive out of place..86
Conditional end directive out of place..86
Couldn't find section during pass2!..86
Label is required for SECTION directive. ..86
Illegal value for RADIX directive! ...86
Need CHIP type here!..87
Invalid CHIP type!...87
End marker for comment missing!...87
End of file before end of comment! ..87
Need character argument for directive!...87
Need quoted file name! ..87
Need line number after file name arg...87
Need local offset in ENDFUNC directive. ..87
Need arg offset in ENDFUNC directive. ..87
Symbol required...87
Symbol value required in SYM/MEMBER directive! ..88
Unimplemented assembler directive. ...88
Missing argument. ...88
Bad argument...88
Divide by zero! ...88

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 6

Invalid operator in floating point evaluate - N. ...88
Bank number out of range! ...88
Hex and symbol are identical! ..88
String not terminated! ...88
Missing terminating '.' on operator! ..88
Macro name already defined! ...88
Macro name conflicts with opcode, directive or section!..89
Arguments must be valid names...89
Different number of arguments in macro call(N) and definition(N). ..89
Too many global equates. ..89
Illegal index register! ...89
Missing character! ...89
Only index register indirect allowed! ...89
Only Y index register allowed! ...89
Illegal addressing mode!..89
Can't use register as label! ..89
Need symbol after '.'!...89
Need trailing '.'!..89
Only #.low. or #.high. allowed! ...89
Instruction not allowed with selected processor..90
Addressing mode not allowed with selected processor. ..90
Immediate value truncated! ..90
Need label to branch to! ..90
Branch out of range!..90
Dot not allowed on opcode names...90
Multiply defined symbol..90
Illegal character in directive. ..90
Need opcode, directive or macro name here..90
Unknown opcode, directive, macro or section...90
Extra characters on line! ...90
Section name already defined! ..90
Section name conflicts with opcode, directive or macro! ...91
Undefined symbol - <SYM>..91

Appendix B Linker Error Messages .. 92
Error creating symbol file!..92
Too many source files in module! ...92
Unable to find tag serial number!...92
Couldn't create error file `FILE'!...92
Error creating symbol listing file! ..92
Linkio:Out of memory! ...92
Cannot create output file: ZLN.TMP! ...92
Error while lseeking output file!...92
Error writing output file! ..92
Error while reading output file! ...92
Attempted to write outside of file bounds!...92
No input given! ...93
Option syntax error! ..93
Cannot have nested -f options. ..93
Cannot open -f file: FILE!...93
Illegal Nintendo map! ..93
Out of memory!..93
Couldn't open FILE in pass 2! ..93
Unknown loader item (0xXX)!..93
Section 'SECT' has different type in module 'FILE:MODULE'!..93

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 7

Overlap of NN bytes in section 'SECT' of 'FILE:MODULE'!...93
Section SECT's ROM image exceeds bank $XX by $XX!..93
Attempt to locate section `SECT' more than once! ...94
Module 'FILE:MODULE' too big to fit!..94
Section 'SECT' overlaps section 'SECT' by NN bytes at address 0xXX (ROM)..94
Section 'SECT' overlaps section 'SECT' by NN bytes at address 0xXX (Relocatable)..94
Can't mix 65xxx and 65032 object module types! ...94
Library format is invalid! ...94
Can't open FILE! ...94
Couldn't read object file FILE! ..94
Not an object file FILE!...94
Undefined symbol: SYM ...94
Branch out of range!..94

INDEX.. 96

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 8

THIS PAGE LEFT INTENTIONALLY BLANK

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 9

 CHAPTER 1 Introduction

This manual provides all the information needed to develop assembly language programs for the W65xxx series of
microprocessors using the WDC Software Development System. The WDC software development system consists of a two-
pass macro assembler, an object module linker, and an object module librarian. There are two WDC assemblers called
WDC02AS and WDC816AS. They are identical in function with two exceptions. First, the default instruction set for the
WDC02AS assembler is the 65C02 while the default instruction set for the WDC816AS assembler is the 65C816. Second,
the WDC02AS assembler checks for the environment variable WDC_INC_6502 while the WDC816AS assembler checks for
WDC_INC_65816. Throughout this manual, when the assembler is referenced, the name WDCxAS will be used.

Assembler

The WDC assembler, WDCxAS, translates assembly language source files into object files. The assembler supports the full
6502 and 65816 instruction sets including alternate mnemonics for a number of the instructions. Twenty-four different
addressing modes are supported. Subsets of the full instruction set for the 6502 and 65C02 can be selected. The extra
instructions of the R65C02 can also be selected. Assembler directives control the organization of source files into modules
for the creation of libraries. Other directives allow the creation and nesting of up to 250 named sections of code or data as
well as 5 pre-defined sections. Sections can be ``org''ed at an absolute address or can be located by the linker. Symbols can
be made private to a source file or public so they can be referenced by other source files. Common definition files can be
referenced by any source file. Additional source files can be appended to any source file.

Assembly language source statement parsing can be tailored by the setting of the default number base, tolerance of spaces in
operands, and the size of index registers and accumulator. A full range of directives is available for the generation of data.
Block fills of memory, ASCII strings, and byte, word or long size constant data can be generated. There are also directives
for controlling how ASCII strings are converted to bytes, a date directive for generating the ascii byte data equivalent of the
current date, as well as the ability to reserve blocks of memory with no initial value.

The assembler also provides a fast macro capability with argument passing. Macros may be nested and may recurse. Special
label handling is available for recursive macros. A full range of conditional directives make macros extremely powerful.
The assembler can optionally produce a listing file. This file can be tailored to list only those sections of code desired. The
page size, length, heading and subheading are all modifiable. Listing of expanded macros and false conditionals are also
controlled by assembler commands. All in all, the assembler provides all the facilities needed for modern assembly language
program development.

Linker

The assembler does not generate output files directly. Instead, object files are created that can be combined together with
other object files and possibly libraries to produce the final output program. The program that combines object modules and
produces the final hex output is the linker, WDCLN. The linker acts as an organizer. It reads all the object files determining
where each will end up in memory or in ROM. The linker then patches any references that occur from one file to another
with the proper address. Finally, the linker produces the hex output file and symbol table in the formats requested.

Librarian

The librarian, WDCLIB, collects object files together into a single library file. The librarian places a special dictionary of all
the functions defined within the library at the front of the library. The linker can use this dictionary to find the functions it
needs in the library very quickly. Only the functions needed by the current program are copied from the library into the
output file.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 10

Manual organization

There are a lot of details in dealing with an assembly language development system. As a result, this manual is broken into
two basic parts. The first part provides a general overview of the development system and how to use it. In particular, it
covers the process of creating assembly language programs, the program structure, the syntax of assembly language
statements and how to write and use macros. The second part is more of a reference manual. It provides short descriptions
of each of the programs with their options detailed, a list of all the assembler mnemonics and addressing modes, and all of the
assembler directives grouped by functionality. Numerous examples are present throughout the text.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 11

CHAPTER 2 Files

This CHAPTER discusses the general process of creating assembly language programs. It covers the whole development
cycle and provides an overview of how the different pieces fit together.

Source files

All assembly language programs begin with the source file. The source file is a text file, which contains assembly language
statements. Each statement contains a processor opcode, an assembler directive, a section directive or a macro name.
Assembly language files are created using a text editor. Source files usually have an extension of .ASM. The source to an
entire program does not need to all be in one file. There are several reasons for dividing a program into different source files.
One reason involves the use of macros.

Macro files

Macros are sequences of assembly language statements that are defined and that can replace a single statement in the source.
Macros allow commonly used sequences of instructions to be defined once and a name associated with that definition. Then,
whenever the name is used, the name is replaced with the statements of the macro definition. Through the use of macro
arguments and conditional expressions, macros can be a very powerful tool for assembly language development. As multiple
programs are developed, a number of useful macros may be produced. Instead of placing these macros in the source file of
each program, it is easier to place the macros in a file of their own. Then this file can be referenced by each program source
file using the assembler INCLUDE directive.

Object modules and libraries

Modular programming is a second reason for having more than one source file. Different parts of the program can be
developed and tested independently. Then, the individual parts can be combined together by the linker. In addition, useful
subroutine functions can be created, assembled and combined together into a library. A librarian program creates libraries
from object files. The advantage of having a library is that only the functions that are used by a program are copied from the
library. It is a convenient way to organize and access common functions. The assembler translates each source file into an
object file. An object file is a binary file which contains the translation of each assembly language statement into it's binary
equivalent. In addition, the object file contains a list of the symbols defined in the source file as well as those symbols
referenced within the source file that aren't defined there.

Output files

The linker takes multiple object modules and combines them together to produce a single output file. Some of the object
modules may come from a library file. The output file produced by the linker is either in binary or hex format. A number of
hex formats are supported. An option to the linker selects the desired hex format. This hex file can be used to program
ROMs or can be downloaded into an emulator for testing.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 12

THIS PAGE LEFT INTENTIONALLY BLANK

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 13

CHAPTER 3 Program Structure

Each program has a definite structure. All programs consist of two basic quantities CODE and DATA. CODE consists of all
the instructions that control the processor and tell it what to do. DATA is the part of the program where information is
stored.

Modules

As previously discussed, each program consists of one or more source files. Each source file usually contains both CODE
and DATA statements. The assembler supports a concept called module. A module is a set of assembly language statements
that can be assembled independently. Most source files are considered a single module by the assembler. Using the
MODULE directive in the assembler, multiple modules can be contained in a single source file. As the assembler
encounters each module, it treats each module as though it had occurred in its own separate file. The only real use and
advantage of creating multiple modules is in creating libraries. If multiple functions were defined in a single source file then
calling just one of the functions would force all of the functions to be included in the output file. Since the module is the
smallest unit that the linker will work with, placing each function in its own module allows the linker to only select the
functions that are referenced.

Sections

Whereas modules provide a means of organizing source code, sections are used to organize where the results ultimately are
placed in memory. The easiest way to understand sections is to consider program code and program data. A typical program
consists of a number of processor opcodes called the code and some amount and type of information called data. Since the
processor is not smart enough to be able to distinguish code from data, the two cannot be intermixed at will. As a result most
programs tend to contain a single block of program code and a single block of data. Sections are a way for the programmer
to indicate whether the output should be considered code or data. A program is organized into sections. There are a number
of pre-defined sections. Two of these are CODE and DATA. When a source file is assembled, the assembler assumes that
the initial section is a CODE section. At any time, a different section can be activated by using the name of the section as a
directive. When a different section is activated, the previous section is pushed onto a stack. When a section is ended with the
ENDS directive, the section stack is popped and the previous section becomes active again.. When the program is linked all
of the pieces of each section are joined together.
Note: Sections can be nested up to 500 deep
Note: The name of a section is truncated to 8 characters on the Linker display screen.
Thus, the input source file looks like:

CODE
code1 statements

DATA
data1 statements
ENDS

code2 statements
DATA
data2 statements

CODE
code3 statements
ENDS

data3 statements
ENDS

END

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 14

When the output file is assembled, the program will look like:

CODE
code1 statements
code2 statements
code3 statements
DATA
data1 statements
data2 statements
data3 statements
END

Thus, sections provide a convenient method of grouping the source together of both code and data while still maintaining the
distinction between them. A typical example is a subroutine that maintains its own work variables. Using sections it is easy
to keep the data with the code.

For example:

DATA
TMP DB 0

ENDS

SWAP: LDA ARRAY,X ;get value
STA TMP ;save it
LDA ARRAY,Y ;get other value
STA ARRAY,X ;copy it
LDA TMP ;get saved value
STA ARRAY,Y ;and copy that
RTS ;all done, return

Pre-defined sections

The assembler has five pre-defined sections whose names and descriptions are:

PAGE0 This section is reference only and is used for creating labels that refer to the direct page. For the 6502,
address $00-$FF. For the 65816, address $00:0000- $00:FFFF.

CODE This is the main program section.
KDATA This is a special data section for constant initialized data that is never modified. For example, a lookup

table of constants.
DATA This is initialized data that will be modified.
UDATA This is data that is not initialized.

Three different data sections have pre-defined characteristics to promote efficient use of ROM and RAM memory space.
In addition, up to 250 additional sections can be created and named by the programmer using the SECTION directive.

Absolute versus Relative

Sections can be either absolute or relocatable. An absolute section starts at a fixed address as specified by an ORG statement
in the source code. When the assembler sees an ORG statement, it marks the section as absolute and as it assembles each
statement, it treats any labels defined in the section as being exactly at the absolute location specified. A relocatable section
works a little different. When the assembler assembles each statement, it treats each label as being relative to the beginning
of the section. Nothing is considered absolute. Then, after the linker collects all the pieces of each section, the entire section
can be located at an absolute address by the linker. The linker will then adjust all the references to relocatable labels turning
them into absolute.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 15

All sections begin as relocatable sections unless created with the SECTION directive followed by either the OFFSET or
INDIRECT options. A section also becomes absolute if an ORG directive occurs within the section.

Section location

If a program is composed of several different pieces of code and/or data that must be located in various locations, then
absolute sections and the ORG directive are definitely the way to go. For example, to place the page number in the first two
bytes of the first three pages of bank zero, consider the following source fragment:

DATA
ORG $0000
WORD $0000

ORG $0100
WORD $0001

ORG $0200
WORD $0002
ENDS

On the other hand, if all that is needed is to put the code one place and the data a different place, then relocatable sections are
worthwhile. Since relocatable sections do not start at a fixed address, the linker is used to place these sections. Using the
linker it is possible to place each of the sections at a particular address. Alternatively, the location of the code section can be
placed and the linker will automatically place any remaining sections one after the other. In this case, the only option to the
linker is the –C option followed by the address where the code is to be placed. When the starting address of a section is not
specified, the linker places it immediately after the preceding section. The first four sections are always CODE, KDATA,
DATA, and UDATA in that order. Any user-defined sections follow UDATA and occur in the order in which the linker
encounters them.

Copying data

In some applications, the program resides in ROM. In this case, the initialized data usually resides in ROM as well.
However, what is desired is to copy the data to RAM and have the code in ROM access the data at its RAM address, not the
ROM address. This is easily accomplished using linker options to set the RAM and ROM address of the DATA section. For
example:

WDCLN -C8000 -D1000, MYPROG.OBJ

will place the CODE section starting at 8000 hex. This is both the ROM address and the address at which the code is
expected to run. The second argument will relocate the DATA section and all references to the DATA section to hex 1000.
However, since an empty ROM address is specified in the argument, the ROM address of the DATA section will be
immediately following the KDATA section. If the KDATA section is empty, the DATA section will immediately follow the
end of the CODE section. In this case, when the program starts up, the DATA section will need to be copied from ROM to
RAM. The included example startup file STARTUP.ASM shows one method of achieving this. This code also sets any
unutilized data to zero, sets up the stack pointer and the Data Bank Register.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 16

Startup.ASM

Included on the distribution disk is a sample assembly language source file called STARTUP.ASM. This file contains code
that performs several important functions related to program startup. It also contains a section which defines the standard
interrupt and reset vectors. This file can be customized to match the application that you are developing. We will examine
the 816 version of this file section by section.

STACK EQU $F000 ;CHANGE THIS FOR YOUR SYSTEM

STARTUP SECTION OFFSET $FF80
START:

CLC ;clear carry
XCE ;clear emulation
REP #$30 ;16 bit registers
LONGI ON
LONGA ON
LDA #STACK ;get the stack address
TCS ;and set the stack to it

The first section does three things that are necessary before the remaining sections can run properly. First, it defines a new
section called STARTUP which will be located at the end of bank 0 at location $FF80. Next, we assume that we arrive here
from the RESET vector so we will be in emulation mode. Thus, the first thing we do is switch to native mode and make sure
that the registers are sixteen-bits wide and that the assembler knows it as well. Finally, we set the up the hardware stack
pointer. The STACK equate should be changed to reflect where you wish the top of the stack to be in your system.

SEP #$20 ;8 bit accum
LONGA OFF
LDA #^_BEG_DATA ;get bank of data
PHA
PLB ;set data bank register
REP #$20 ;back to 16 bit mode
LONGA ON

This piece of code sets the Data Bank register by pushing the bank part of the DATA section and then popping it into the
register. The _ROM_BEG_DATA and _BEG_DATA symbols are symbols automatically created by the linker. For each
section, it creates three symbols, _ROM_BEG_secname, _BEG_secname and _END_secname, which correspond to the rom
location and the execution beginning and end of the section. These will be used more in the next two sections of code.

LDA #_END_DATA-_BEG_DATA ;number of bytes to copy
BEQ SKIP ;if none, just skip
DEC A ;less one for MVN instruction
LDX #<_ROM_BEG_DATA ;get source into X
LDY #<_BEG_DATA ;get dest into Y
MVN #^_ROM_BEG_DATA,#^_BEG_DATA ;copy bytes

SKIP:

Next, we copy the DATA from ROM to RAM. This section assumes that the DATA has been linked to reside in RAM, but
is physically in the ROM at some location specified by _ROM_BEG_secname. If the DATA does not need to be copied, this
section can be deleted. First, we calculate the size of the DATA section by subtracting the end of the section from the
beginning. If the size is zero, we skip ahead. If the size is non-zero, we decrement it, load the X and Y registers with the low
sixteen bits of the ROM and RAM addresses. Finally, we copy the data using the MVN instruction with the bank parts of the
ROM and RAM addresses.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 17

LDX #_END_UDATA-_BEG_UDATA ;get number of bytes to clear
BEQ DONE ;nothing to do
LDA #0 ;get a zero for storing
SEP #$20 ;do byte at a time
LDY #_BEG_UDATA ;get beginning of zeros

LOOP STA |0,Y ;clear memory

INY ;bump pointer
DEX ;decrement count
BNE LOOP ;continue till done
REP #$20 ;16 bit memory reg

DONE:

Next, we need to fill the un-initialized data area, UDATA, with zeroes. First, we calculate the size of the UDATA section
and if it is zero, skip ahead. Then, we get zero into the accumulator and make it eight bits wide. Next, we put the beginning
of the UDATA section into the Y register. Finally, we loop through all of the UDATA section storing the zero in the
accumulator. When the loop finishes, we restore the accumulator to sixteen bits.

XREF MYSTART ;change MYSTART to yours
JMP >MYSTART ;long jump in case not bank 0

XREF _ROM_BEG_DATA
XREF _BEG_DATA
XREF _END_DATA
XREF _BEG_UDATA
XREF _END_UDATA

This last section of code performs a long absolute jump to the start of the actual program. This allows the program to reside
anywhere in the processors address space. The XREF directive tells the assembler that the MYSTART symbol is defined in
another file and will be filled in by the linker. Change MYSTART to be the name of the entry point of your assembly
language program. It is also necessary to define the entry point to be public in the file that defines it using XDEF. The last
five directives declare the linker special symbols external so that the linker will know to fill them in.

ORG $FFE4

N_COP DW 0
N_BRK DW 0
N_ABORT DW 0
N_NMI DW 0
N_RSRVD DW 0
N_IRQ DW 0

DS 4
E_COP DW 0
E_RSRVD DW 0
E_ABORT DW 0
E_NMI DW 0
E_RESET DW START
E_IRQ DW 0

ENDS
END

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 18

The last section implements the reset and interrupt vectors. The ORG directive makes sure that they are in the right location.
The only vector that is filled in is the RESET vector which points to the START label which is at the beginning of
STARTUP.ASM. To use any of the remaining vectors simply replace the `0' with the label of the corresponding interrupt

routine. Note that the vectors are only sixteen-bits wide which limits them to an address in Bank zero. To use an interrupt
routine that is not in Bank zero, add the following lines before the ORG directive for each vector you wish to use:

JMP0 JMP >FUNC0

Then, place the label JMP0 in the vector table. The basic idea is to vector into Bank zero to a long absolute jump to the
interrupt handler.

Nintendo development

This section briefly describes those features of the development system which have been provided to aid in development for
the Super Nintendo Entertainment System (SNES). The linker provides three options which are specifically designed to
enhance SNES development. The -HN option produces ISX binary format that can be used with the Nintendo debugger.
Full symbol support is provided along with LONGA/LONGI disassembly support. The -MN, -MN80 and -MN21 options
are provided primarily for C language programmers who don't wish to specify the location of their routines explicitly. When
the -MN option is specified, the Nintendo memory map is used when creating the final output program. The initial code
segment starts at $00:8000 and each succeeding bank code segment starts at $8000 as well. The linker first places absolute
sections and sections which have a ROM org address specified as a link option. Then it attempts to place code modules in
any holes, expanding to new banks as needed. The -MN80 option is exactly the same, but uses the fast ROM addresses
starting with bank $80. The -MN21 option operates similarly, but starts at $C0:0000 and starts at $0000 of each additional
bank. Note that for C programs, they must have been compiled with Large Code when using these linker options.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 19

CHAPTER 4 Statement Syntax

All lines other than comment lines and blank lines have the following format:

LABEL OPERATION OPERAND

Labels are optional on most statements, required on a few and illegal on the remainder. Operands are required or illegal on
most statements and optional on a few.

Comments

A comment normally appears after a semicolon. If an entire line is to be a comment, an asterisk may be used instead.
Comments also may appear after the operand field of an instruction, macro call or directive. By default, spaces are not
allowed in the operand field, so a space before the comment will be sufficient. However, if the SPACES ON directive has
been given, a semicolon is required to remove the ambiguity.

Labels

Labels give the programmer the ability to give a name to a location, value or macro that occurs in the assembly language
program. When a label is defined it must be the first thing on that line. It may be preceded by spaces or tabs only if it is
followed by a colon, otherwise it must begin with the first character of the line. Labels can be up to 64 characters long. A
label must begin with a letter or either of the characters `_' or `~'. The rest of the label must contain letters, numbers, or the
characters `_' or `~'.
 Some examples of labels are:

1 9 (columns)
lab1

lab2:
__foo
~~main

By default labels are only visible to the module or file in which they are defined. If the a label is made global using one of
the XDEF, GLOBAL, or PUBLIC directives, then it is visible to any other module.

There are also temporary labels that have an even smaller range of visibility than normal labels. Temporary labels are only
visible from one normal label to the next normal label. Temporary labels begin or end with a ? and may contain any of the
characters contained in a normal label. Temporary labels that begin with a ? are different from those that end with one. The
? character can be changed by using the LLCHAR directive. Labels are optional on all processor instructions and macro
calls and on most assembler directives. A label may also appear on a line by itself.

WARNING: The following are reserved labels: A, X and Y.

Operation

There are several different types of operations that can occur in an assembly language statement. All operation opcodes are
case independent. In addition, except for processor instructions, all directives may be preceded by a `.' to distinguish them
from processor opcodes.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 20

Processor Instructions

The full list of processor instruction mnemonics is presented in CHAPTER 11. The subset of valid processor mnemonics is
dependent on the last CHIP directive executed. The WDC816AS assembler defaults to CHIP 65816 and the WDC02AS
assembler defaults to CHIP 65C02, however other processors in the same family can be selected. Each instruction has one
or more allowable addressing modes. These are described in the data sheets that accompany each processor. The full set of
addressing modes supported by the W65C816 processor is described in CHAPTER 11.

Assembler Directives

There are a wide and varied assortment of assembler directives which control various aspects of the assembly process.
CHAPTER 11 provides detailed information on each assembler directive supported. The assembler directives are grouped
into six main areas:

• File and Symbol Control
• Parsing Control
• Data Definition Control
• Macro Control
• Conditional Control
• Listing Control

Section Directives

Section names can be used as an assembler directive instructing the assembler to place subsequent statements in the named
section. There are five predefined section names: PAGE0, CODE, KDATA, DATA, and UDATA. Up to 250 additional
section names can be created.

Macro Calls

A macro, once it has been defined, can be used like any other assembler directive. Macro calls may have labels and may or
may not have arguments specified in the operand field. See CHAPTER 5 on Macros and Conditionals for more details.

Operands

Operators

The assembler supports a number of operators. Each operator has a precedence associated with it. Operators with the same
precedence are evaluated left to right. Parentheses can be used to group expressions and change the operator precedence.
For example, the expression:

a+b*c

is interpreted as:

a+(b*c)

because the `*' has a higher precedence than the `+'. Parentheses can be used to re-order the expression to achieve the desired
result:

(a+b)*c

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 21

Unary Operators

Unary operators are followed by a single expression.

+ EXPR specifies a positive expression
- EXPR negates the value of EXPR
.NOT. EXPR bit-wise complement of EXPR
/ EXPR

Binary Operators

L ** R raise L to the R power
L * R multiply L times R
L / R divide L by R
L .MOD. R get the remainder from dividing L by R
L >> R logically shift L to the right R times
L .SHR. R
L << R shift L to the left R times
L .SHL. R
L R add L to R
L - R subtract R from L
L & R do a bit-wise AND of L and R
L .AND. R
L | R do a bit-wise OR of L and R
L .OR. R
L ^ R do a bit-wise XOR of L and R
L .XOR. R

Comparison Operators

L = R left expression equal to right
L .EQ. R
L > R left expression greater than right
L .GT. R
L < R left expression less than right
L .LT. R
L .UGT. R left expression unsigned greater than right
L .ULT. R left expression unsigned less than right

Operator Precedence Table

Unary operators have the highest precedence, comparison operators have the lowest. In the following table, operators on the
same line have the same precedence. Each succeeding line has lower precedence than the preceding line.

Unary operators (+, -, \, .NOT.)
**
*, /, .MOD., >>, .SHR., <<, .SHL.
+, -
&, .AND.
|, .OR, ^, .XOR.
Comparison operators (=, .EQ., >, .GT., <, .LT., .UGT., .ULT.)

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 22

 Special symbols to help calculate Numbers and Addresses (ADDRESSING MODE SYMBOLS)

 Symbol Name Use

 | Pipe Absolute Address
 ! Exclamation Absolute Address
 < Less than Lower 16 bits only
 > Greater than 8 bit shift to the right
 # Pound Immediate
 ^ Caret Upper 16 bits only
 * Star Program Counter at the next location
 $ Dollar Program Counter current hex value
 #().low. Lower 16 bits only
 #().high. Upper 16 bits only
 >> 16bit shift to right (used to target the bank, load bank address)
 #“x” (pound double quote) Use ASCII character for Immediate.
 #‘@’ (pound single quote) Use ASCII character for Immediate. If LongA is on then # ‘23’ is valid.

Numbers

Numbers can be specified several different ways using different bases. The default base is decimal. The base can be changed
by using the RADIX directive. To indicate a number that is not in the default base, a letter is appended to the number
indicating the base to use.

The following table lists the prefixes and the corresponding base:
$ hexadecimal
% binary

The following table lists the suffixes and the corresponding base:

B binary
O or Q octal
D decimal
H hexadecimal

 Addresses

Addresses can be specified using a number as defined in the preceding section. Alternatively, an address can be specified as
a bank number followed by a colon followed by an address.
 For example:

LDA 2:30H
LDA $20030

produce the same result.

When the assembler is parsing addresses, it starts by assuming that an address is ABSOLUTE. If the address is greater than
FFFFH, then it assumes that it is a long absolute address. It is possible to directly specify how an address should be
interpreted by the assembler. This is especially important when using symbolic names which are defined externally.
To specify an address that is a direct page address, the `<' character precedes the address or expression. For example,
consider the following two statements:

LDA 0
LDA <0

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 23

The first statement is interpreted as absolute location 0 in the bank specified by the Data Bank Register. The second
statement will load from location 0 in the direct page. To force an address to be an absolute address, the `|' character or the `!'
character precedes the address or expression. If an expression value is less than 10000H, then this prefix is redundant.
Finally, to force a long absolute address, the `>' character should precede the address or expression.

 For example:

LDA |1:0000H ;load from 0 absolute
LDA >0 ;load from 0 in bank 0

In the first example, the bank value is ignored.

 The address prefix operators must be used at the beginning of the expression.

Immediate Operands

When an instruction uses the IMMEDIATE addressing mode, the operand is preceded by a `#' character. The value of the
expression following the `#' character is truncated to either eight or sixteen bits depending on the settings of the CHIP,
LONGA and LONGI.

The `#' character may be followed by a second character which causes the expression to be shifted right before truncating.
The `<' character causes no shift to occur, the `>' character causes an eight bit shift, and the `^' character causes a sixteen bit
shift. Thus, these characters allow access to the low byte, the high byte and finally the bank part respectively.

For example:

#01020304H 04H 0304H
#<1020304H 04H 0304H
#>1020304H 03H 0203H
#^1020304H 02H 0102H
#(1020304H).low. 04H 0304H
#(1020304H).high. 03H 0102H

shows the effect of these prefixes with an eight-bit and sixteen-bit expression.

The expressions `#().low.' and `#().high.' can be used as well. The DBREG and DPAGE directives can be used to control
the generation of addresses for absolute symbols. The DBREG is used to generate an absolute address if the symbol is
located in the Data Bank specified in the DBREG directive. Otherwise, long absolute addressing will be used. Similarly, the
DPAGE directive can be used to indicate the run-time value of the Direct Page register to allow the assembler to optimize
generation of Direct Page address expressions. For ASCII characters, use LDA #“!”.

Character Constants and Strings

Character constants are delimited by quote characters. Special combinations of two character sequences may be used or
certain control characters if enabled by the TWOCHAR directive. Character strings are delimited by either single or double
quote characters.

Program Counter

The characters `$' or `*' can be used in an expression to represent the program counter at the beginning of the current
instruction.
 For example:

LAB EQU *
BRA $+10

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 24

Assembler Addressing Modes

8-bit operations less than $100 (Page zero)

Normal direct page addressing:
LDA $43 ;Load Accumulator from: bank zero: direct page: $43

Force absolute addressing: zero page in data bank:
LDA !$23 ;Load Accumulator from: data bank: $0023

Force long addressing: zero page in data bank zero:
LDA >$33 ;Load Accumulator from: $00:0033

16-bit Operations from $100 thru $FFFF

Normal absolute addressing:
LDA $5643 ;Load Accumulator : data bank: $5643

Force direct page addressing:
LDA <$5633 ;Load Accumulator from: bank zero: direct page: $33

Force long addressing:
LDA >$5633 ;Load Accumulator from: $00:5633

24-bit Operations over $FFFF

Normal long addressing:
LDA $456733 ;Load Accumulator from: $45:6733

Force absolute addressing::
LDA !$567833 ;Load Accumulator from: data bank: $7833

Force direct page addressing:
LDA <$567833 ;Load Accumulator from: bank zero: direct page: $33

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 25

CHAPTER 5 Macros and Conditionals

This CHAPTER describes how to write and use macros and conditionals.

Macros

Macros make complicated or repeated sets of assembly language instructions much simpler to use. Conditionals within
macros allow a single macro to be useful in multiple situations. The use of macros greatly enhances the readability of
assembly language source files.

Macro Definition

Macros must be defined before they are used. Each macro definition specifies the name of the macro and the names of the
arguments to the macro if any. The syntax of the definition is:

LABEL MACRO [ARG1,ARG2,...]

where the LABEL specifies the name of the macro and the arguments are optional.

For example:

ADD MACRO SRC1,SRC2,DEST

defines a macro named ADD with three arguments.

Following the macro definition line, are the lines of text that define the macro. All lines following the macro are saved in a
text buffer up to a line containing a MACEND or ENDM directive. This line terminates the macro definition.

NOTE: the MACEND or ENDM directive line may not contain a label.

 For example:

ADD MACRO SRC1,SRC2,DEST
CLC
LDA SRC1
ADC SRC2
STA DEST
MACEND

defines a macro which adds the first two arguments and stores the result in the third.

Calling a Macro

To call a macro, all that is needed is to use the name of the macro just like an assembler directive followed by the macro
arguments, if any. For example, the previously defined ADD macro could be invoked as:

ADD VAR1,#2,VAR1

which would add 2 to the contents of var1.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 26

Redefining Assembler Directives and Opcodes

Since macro names are added to the assembler opcode and directive table, they will override an existing assembler directive
or opcode. The assembler will generate an error if such a condition exists unless the MACFIRST ON option has been
specified. Care should be taken when choosing macros names to avoid conflicts.

Macro Labels

Within a macro, there are several additional forms that labels may take. First, it is possible to concatenate two or more
symbols, macro arguments and expressions using the `@' character. When the `@' is encountered, the current symbol ends
and a new symbol begins, with the concatenation character discarded. The new symbol may be another symbol, a macro
argument or the value of an expression. If an expression is specified, the expression must be enclosed in a balanced set of `<'
and `>' characters. For example:

TST MACRO ARG

A@ARG DB 0
B@<ARG> DB 0
C@<2*ARG> DB 0

ENDM

defines a macro with one argument.

Within the macro body, a label is generated using the letter `A' followed by the literal value of the argument passed when the
macro is invoked. The second label generated uses the letter `B' followed by the value of the argument. The third label
generated uses the letter `C' followed by the value of the argument multiplied by 2.
 Thus,

VAR EQU 5
TST VAR

will generate:

TST VAR
+ AVAR DB 0
+ B5 DB 0
+ C10 DB 0

A second form of label only valid within a macro uses the `#' character to generate unique labels. If a macro defines a label
within the macro, then calling the macro more than once will generate a duplicate label. This can be avoided by appending
the `#' character to the end of the label name. The assembler will substitute a four digit number for the `#' character. This
number is unique to each macro call.
 For example, the program:

TEST MACRO
LAB# NOP

JMP LAB#
ENDM

TEST
TEST

mailto:A@ARG
mailto:B@<ARG
mailto:C@<2*ARG

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 27

will generate the listing:

1 TEST MACRO
2 LAB# NOP
3 JMP LAB#
4 ENDM
5
6 TEST

+ 6 00:0000: EA LAB0001 NOP
+ 6 00:0001: 4C xx xx JMP LAB0001

7 TEST
+ 7 00:0004: EA LAB0002 NOP
+ 7 00:0005: 4C xx xx JMP LAB0002

Conditional assembly

Using conditional assembly, it is possible to have the same assembly language source produce different output depending on
how certain elements are defined. A typical conditional consists of the conditional test followed by the statements that are
assembled if the condition was true. These statements may be followed by an ELSE directive. If the ELSE is found, then
the following statements are assembled if the condition was false. The conditional is terminated by either an ENDIF or
ENDC directive.

 For example:

IF CNT>500
 MESSG CNT TOO HIGH!
 ENDIF

IFTRUE VAL>2

LONG 0
ELSE

WORD 0
ENDIF

Conditionals can be nested for more complex conditions. This example generates the proper size zero depending on the
value of VAL.

IF VAL=4
LONG 0

ELSE
IF VAL=2

WORD 0
ELSE

BYTE 0
ENDIF

ENDIF

Each conditional test must be balanced by a corresponding ENDC or ENDIF. Note that all statements containing
conditional tests or the directives ELSE, ENDC, and ENDIF may not have a label.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 28

THIS PAGE LEFT INTENTIONALLY BLANK

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 29

CHAPTER 6 WDCxxAS (ASSEMBLER)

The WDC macro assembler, WDCxAS, provides all the tools and facilities to do professional assembly language program
development.

Running the Program

The format for the assembler command is:

WDCxAS [-GSL1] [-I PATH] [-Dsym[=val]] [-O OUTPUT] SRCFILE

where SRCFILE is the name of the assembly language file that is to be translated. For example the command:

WDCxAS -O MYPROG.OUT MYPROG.ASM

will read the input file MYPROG.ASM and place the object code into the file MYPROG.OUT. If the -O option had not been
specified, the result would have been placed in the file MYPROG.OBJ since .OBJ is the default output extension. If the .ASM
extension had not been specified, the assembler would have looked for a file with no extension and then, if not found, would
add the .ASM extension and tried again. Thus the simple command:

WDCxAS MYPROG

would assemble MYPROG.ASM and place the output in the file MYPROG.OBJ.

WARNING!: The line “WDCxxAS” must be less than 256 characters.

Option Summary

-1 Use version 1 control characters.
-D Define global equate.
-G Generate assembly source information.
-I Specify include directories.
-K Path name specifying name of listing file placed in __FILE__
-L Generate a listing file.
-O Specify the name of the output file.
-S Pass local symbols to linker.
-V Display the amount of RAM needed to assemble the program
-W Causes a change in the default page width to 132

Option Descriptions

-1

Version 1.0 of the assembler used slightly different control characters. In particular, the macro concatenation character `|'
was changed to `@', the bit-wise inclusive OR character `^' was changed to `|', and the bit-wise exclusive OR character `^'
was added. This option changes the characters back to the 1.0 versions for compatibility.

-D

This option is used to define an absolute symbol at run time. The symbol can then be used in conditional statements to
change the code generated. The symbol can be followed with an equal sign and an absolute decimal value. If no value is
specified, then the symbol is given the value one. For example the following command line:

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 30

WDCxAS -DCOUNT=3 -DDEBUG FILE.ASM

will set the absolute symbol COUNT to the value 3 and the symbol DEBUG to the value 1. Specifying these options is
equivalent to the following statements appearing at the beginning of the source file:

COUNT GEQU 3
DEBUG GEQU 1

-G

The assembler and linker can now produce source level debugging information for programs. When this option is specified,
the assembler will generate special object file records which indicate the number of bytes generated for each source line in
the file. Information is also generated to determine the source file containing the source line. This option will increase the
size of object modules generated by the assembler. The INCDEBUG directive can be used to control the generation of
source information for included files. The –G option creates the .bin file used with the WDC Debugger (WDCDB.EXE) and
the WDCDB.INI files.

-I

When the assembler encounters an INCLUDE or APPEND directive, the assembler looks in specific directories in a specific
order for the named file. First, the current directory is checked. Next, any directories that have been specified using the -I
option will be searched. Finally, if an environment variable called WDC_INC_65816 or WDC_INC_6502 has been
defined, then any directories specified in that variable will be searched.

For example, if one of the following lines is in the AUTOEXEC.BAT file:

SET WDC_INC_65816=C:\WDC\INCLUDE;C:\WDC\MACROS
SET WDC_INC_6502=C:\WDC\INCLUDE;C:\WDC\MACROS

then, the command:

WDCxAS -I C:\MYINC PROG

will assemble the file PROG.ASM. If the file contains any INCLUDE or APPEND directives, then the assembler will look
for the specified file in this order:

current directory
C:\MYINC
C:\WDC\INCLUDE
C:\WDC\MACROS

-K

This option causes the path name specifying the name of the listing file to be placed in the reserved word __FILE__.

-L

This option instructs the assembler to generate a listing file that will have the same root name as the output name and an
extension of .LST. The format and output control of the listing file are controlled by assembler directives within the source
file.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 31

-O

This option is used to specify the name of the output file. Normally, the output file has the same root name as the source file,
and the extension is changed to .OBJ. For example, the command:

WDCxAS MYPROG.ASM

will generate an output file called MYPROG.OBJ. If the -O option is used, the output file name can be specified directly.
For example:

WDCxAS -O JUNK.REL MYPROG.ASM

will place the same output into a file called JUNK.REL.

-S

Normally, labels that aren't declared global are not placed in the object module since the assembler resolves all references to
them. If the -S option is specified, the symbols are included in the object file so that the linker may pass them on to a symbol
file that can be used when debugging.

 -V

This is the Verbose option. This option displays the amount of RAM needed to assemble the program.

-W

This option causes a change in the default page width to 132, creating a wide listing.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 32

THIS PAGE LEFT INTENTIONALLY BLANK

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 33

CHAPTER 7 WDCLN (LINKER)

The WDC linker, WDCLN, reads one or more object files and/or libraries and merges them into a single output file.
References from one module to another are resolved during the link. The linker operates in two passes. In the first pass,
each object module is scanned to determine what symbols are defined and what symbols are referenced. Symbols that are
defined are entered into a symbol table. When other object modules want the address of a symbol they will look in the
symbol table. If the symbol is not in the symbol table it is added to a list of undefined symbols. If a later module defines the
symbol it is removed from the undefined list. If a library is encountered, it's dictionary is repeatedly scanned for any symbols
that match any of the symbols in the undefined list. If such a symbol is found, the module that defines it is loaded from the
library and its symbols are handled just like a normal object module. Through this process, only object modules that are
needed are loaded from the library. Libraries are usually placed at the end of the list of object files. At the end of the first
pass, all undefined symbol references should be resolved. During the second pass, the linker reads each object module a
second time. As it reads each module, it generates the final output file based on the information in the object module.

Running the Program

Note: There are calls to user defined functions that are system dependent.
Example: _unlink, _ _close, _ _isatty,_ _write, _ _lseek, _ _fseek.
_ _read, _ _open, _ _creat, _ _ access (see WDC_SDS/INCLUDE/FCNTL.H

The WDCLN program is started by giving a command with the format:

WDCLN [-BEGNQTVWX] [-Hxx] [-Mxx] [-Sxx] [-O OUTPUT] [-Zsec=XX,XX]
[-Asec=XX,XX] [-CXX,XX] [-DXX,XX] [-KXX,XX] [-UXX,XX]

 [-F argfile] OBJ1 [OBJ2 ...] [LIB1 ...] [-Lxx]

WARNING!: The line “WDCLN” must be less than 256 characters.

Input files are object files created by the WDCxAS assembler. The default extension for such an object file is .OBJ. If an
object file is named without an extension, the linker first checks for the file without an extension and then adds the default
extension. If the extension is specified, then the file is looked for only under that name. The linker looks for the input files in
the current directory. If they are not found in the current directory, the linker looks at each of the directories defined in the
WDC_LIB environment variable.

Placing a line such as:

SET WDC_LIB=C:\WDC\LIB

in the AUTOEXEC.BAT file will tell the linker where to look for common object files and libraries. Multiple directories may
be separated by semi-colons. Libraries of object modules are created by the WDCLIB utility. Libraries can be specified
using the full path and name of the file. Shorthand versions of libraries can also be specified using the –L option. The name
of the output file is usually taken from the name of the first object module unless the -O option is specified. The extension
on the object module name, usually .OBJ, is replaced by an extension appropriate to the hex format requested. For example,
the command

WDCLN PROG.OBJ STUFF.OBJ CT.LIB

would create an output file called PROG.S19 since Motorola S19 format is the default.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 34

The output file can be explicitly specified by using the –O option. In that case, the command:

WDCLN -O TEST.HEX PROG STUFF -LCS

would place the program in the file called TEST.HEX. Note that even though the .OBJ extensions are omitted and the library
is specified using the -L option, the arguments will reference the same files as in the previous example.

Option Summary

-A Specify section address.
-B Place bank info in .bnk file.
-C Specify CODE address.
-D Specify DATA address.
-E Place errors in a .err file.
-F Read arguments from the specified file.
-G Generate source debug information.
-H Specify the hex output format.
-J Sort module info by name.
-K Specify KDATA address.
-L Specify a library name.
-M Specify machine format.
-N Discard .QCK symbols.
-O Specify the name of the output file.
-P Set the fill characters in the hex output file.
-Q Tell the linker to be quiet.
-S Specify the symbol file format to use.
-T Generate a map file.
-U Specify UDATA address.
-V Display additional information.
-W Disable warnings.
-X Use EMM memory for symbol tables.
-Z Set the spread for the section.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 35

Option Descriptions

-A

This option is used to specify the relocation and ROM address of the named section. The option is followed by information
in the following format:

-Asection=[XXXX][,[XXXX]]

where section is the name of the section to be located. The section name is followed by an `=' sign which in turn is followed
by the relocation address and ROM address separated by a comma. All addresses are assumed to be hexadecimal numbers.
If the comma and ROM address are not present, it is assumed that the relocation address will be used for the ROM address as
well. If the comma is present and either the relocation address or the ROM address is missing, then the specified address is
assumed to be the end of the previously specified section. For more information see CHAPTER 3.

EXAMPLE:

-Avec=FFE4 ;ROM and relocation both at FFE4
-Avec=FFE4,8000 ;in ROM at 8000, assembled as though at FFE4
-Avec=FFE4, ;in ROM after previous section
-Avec=,8000 ;in ROM at 8000, assembled after previous
-Avec=, ;ROM and relocation after previous

; this is the same as no option at all

-B

This option is used to create a file with the same root name as the output file and with the extension `.BNK'. This file is
similar to the map file and contains bank information.

-C

This option is used to specify the relocation address and the ROM address of the predefined CODE section. The format is:

-C[XXXX][,[XXXX]]

which is similar to the -A option without the section name.

EXAMPLE:

-C8000 ;ROM and relocation both at 8000
-C18000,8000 ;in ROM at 8000, assembled as though at 18000
-C18000, ;in ROM after previous section (0 for code)
-C,8000 ;in ROM at 8000, assembled at 0
-C, ;ROM and relocation both 0

;this is the same as no option at all

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 36

-D

This option is used to specify the relocation address and the ROM address of the predefined DATA section. The format is:

-D[XXXX][,[XXXX]]

which is similar to the -A option without the section name.

EXAMPLE:

-D8000 ;ROM and relocation both at 8000
-D18000,8000 ;in ROM at 8000, assembled at 18000
-D18000, ;in ROM after KDATA, assembled at 18000
-D,8000 ;in ROM at 8000, assembled after KDATA
-D, ;ROM and relocation both after KDATA

; this is the same as no option at all

-E

This option is used to create a file with the same root name as the output file and with the extension `.ERR'. This file
contains any warnings or error messages generated during the link.

-F

This option causes the linker to continue reading options and file names from a file. When done, it then continues reading
arguments from the command line. The name of the file follows the option -F. Lines beginning with a `#' character are
ignored. For example, the following command links PROG.OBJ with SUB1.OBJ, ..., SUB4.OBJ, and TC.LIB. It reads some
arguments from the file PROG.LNK:

WDCLN PROG.OBJ -F PROG.LNK TC.LIB

where PROG.LNK contains:

-O PROG.OUT
SUB1.OBJ SUB2.OBJ
SUB3.OBJ
SUB4.OBJ

WARNING: There is a limit of 5000 files for the source level information contained in reading
file names from a file (Include files are counted in this total).

-G

This option tell the linker to generate source level information. When specified by itself with no additional symbol style
option, the WDC symbol file format is generated. Otherwise, if the -SN Extended MicroTek symbol format option is
specified, the source information is added as special records.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 37

-H

This option is used to select the format of the hex output file. Four formats are currently supported. The following table
shows the name of the format, the option used to generate it, the default file extension generated for the output file and the
address field size.

Option File Size Format
-HB .BIN -- Straight Binary
-HI .HEX 16 Intel Hex
-HIE .HEX 32 Extended Intel Hex
-HM19 .S19 16 Motorola S19
-HM28 .S28 24 Motorola S28
-HM37 .S37 32 Motorola S37
-HN .ISX 24 Nintendo Binary
-HT .TEK 16 Tektronix Hex
-HZ .BIN 24 WDC Binary

Binary format:

The following binary format is generated if `-hz' is specified to the linker:

Initial byte 'Z' as signature.
Then for each block:
 3 byte address
 3 byte length
 length bytes of data

The final block has an address and length of 0.
The default is Motorola S19.

-J

This option causes the module info to be placed in alphabetical order.
By default, module info is sorted by section.

-K

This option is used to specify the relocation address and the ROM address of the predefined KDATA section. The format is:

-K[XXXX][,[XXXX]]

which is similar to the -A option without the section name.

EXAMPLE:

-K8000 ;ROM and relocation both at 8000

-K18000,8000 ;in ROM at 8000, assembled at 18000
-K18000, ;in ROM after CODE, assembled at 18000
-K,8000 ;in ROM at 8000, assembled after CODE
-K, ;ROM and relocation both after CODE

;this is the same as no option at all

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 38

-L

This option takes the following characters and adds .LIB to form the name of the library. The default library directories
specified in the WDC_LIB environment variable are then searched for the fully defined file name.
 For example, the command:

WDCLN -J –LCL

will look for the file LCL.LIB.

Note: The order of the libraries is important! The linker will pull in the functions it needs from the first library it sees. For
example, the following command:

WDCLN Sample.obj –LMS –LCS

will pull in the scanf and printf functions from the floating point library as it is specified first. This will result in larger code
size! Therefore,

If you are using floating point math, put –LMS before –LCS so the proper functions are included.
If you are NOT using floating point math, do not include –LMS on the command line, or put it after –LCS.

Note: For the W65C02, use c.lib and/or m.lib. For the W65C816, use coc.lib, col.lib, com.lib, ms.lib, mm.lib, mc.lib, ml.lib,
cs.lib, cm.lib, cc.lib, and/or cl.lib.

-M

This option is used to select a special machine mode. Currently, the only available machine modes are -MN, -MN80 and -
MN21 which stand for Nintendo, slow and fast, and Nintendo Mode 21 respectively.

 -N

If this option is specified, the linker will not place any symbols defined in a .QCK file into the symbol file. This is useful if
the .QCK file is created from a large amount of data whose symbols are not required after linking. The symbol file can be
significantly smaller if the data symbols are discarded.

-O

Option -O can be used to specify the name of the file to which the linker is to write the executable program. The name of
this file is in the parameter that follows -O. For example, the following command writes the executable program to the file
PROG.OUT:

WDCLN -O PROG.OUT PROG.OBJ TC.LIB

If this option is not used, the linker derives the name of the executable file from that of the first input file with the extension
changed to reflect the type of hex file being generated.

-P

This option sets the fill characters in the hex output file. The default, (no -P), does not add any fill characters to the hex
output file. If this option is specified as –PFF, it will fill in the blank areas of the hex output file with $FF’s (all 1’s). If this
option is specified as –P00, it will fill in the blank areas of the hex output file with zeros, (0’s).

-Q

As the linker reads files and modules, it displays the name of each module. Each subsequent module name overwrites the
preceding name. This option tells the linker not to display module names.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 39

-S

This option controls the generation of symbol file information. By default, no symbol file is generated. When this option is
specified, a symbol file is generated which can be used to aid in debugging the application.

 The following table shows the options and the formats generated.

Option Format
-S2 2500AD symbol format
-SM MicroTek symbol format
-SN Extended MicroTek symbol format
-SQ Quick link object file
-SZ WDC symbol format

The linker supports an extension to the Extended MicroTek symbol file format.

The linker generates the following additional symbol records
if the '-g' (source level info) option and '-sn' options have been selected.

0-9 Standard MicroTek symbol type - global symbols
50-59 Standard MicroTek symbol type - local symbols
101 Single character name that is the status Register as specified by LONGA/LONGI directives. In other words,

if LONGA ON is specified a 101 record will be generated with a $20 as the ps value.
102 A two character name (low,high) that is the line number associated with this address.
103 The name is the source file name associated with the object module.
120+N A zero length name with the address being the starting address for section N. Section 1 is CODE, section 2

is DATA, section 3 is UDATA. Other sections can probably be ignored unless you want to handle them.
150+N A zero length name with the address being the ending address fot section N.

The accompanying program source, `nsym.c', will display the records of this symbol file format.

-T

This option instructs the linker to generate a text map file with the extension .MAP. The final address of each symbol is
listed.

-U

This option is used to specify the relocation address and the ROM address of the predefined UDATA section. The format is:

-U[XXXX][,[XXXX]]

which is similar to the -A option without the section name. The UDATA section is a little different since it never needs to be
in the ROM at all since it contains uninitialized data.

EXAMPLE:

-U8000 ;ROM and relocation both at 8000
-U18000,8000 ;in ROM at 8000, assembled at 18000
-U18000, ;in ROM after DATA, assembled at 18000
-U,8000 ;in ROM at 8000, assembled after DATA
-U, ;ROM and relocation both after DATA

; this is the same as no option at all

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 40

-V

This option displays additional information to the screen giving the names of variables and their locations.
Note: If the linker output is longer than the screen will allow, the linker output can be redirected to a file and viewed in its
entirety. You can redirect the linker output to a file by adding >> filename.txt to the end of the linker line.

For example:
WDCLN -c1000 –sz –hz –g –t –v –o exmpl1.bin t0s.obj exmpl1.obj –lcs >> output.txt
will redirect the linker output to the file output.txt. The file can then be viewed in a text editor.

-W Note: This option not used after V3.10

This option disables warnings from the linker. The linker will warn if a symbol defined in a program module overrides a
symbol defined in a library module. This warning is useful for preventing hard to track down errors such as when the user
defines a routine called write that overrides the library write routine.

-X

This option directs the linker to use EMM memory mapping to provide additional space for linking programs with large
numbers of symbols. It must be the first option specified.

-Z

This option is used to specify the top and bottom address to use when spreading the indicated section of various modules
across multiple banks of memory. The format is:

-Zsec=[bottom][,top]

The section specified by sec will be marked for spreading. The default bottom is 0 and the default top is \$1:0000. If no
bottom or top is specified, the default is used. The first byte of the section is specified using the ROM and relative org
directives. The following examples would spread code across the top and bottom 32K of each bank.

EXAMPLE:

-Zcode=8000 ; spread code starting at $8000
-Zcode=,8000 ; spread code from 0 to $8000

The sub-options for –Z are: -Zsec (section name)=, -Z code=, and –Zdata=,.

Quick Linking

Many programs are composed of a large amount of code and data. During development, large portions of the data will
change only rarely. However, even a minute change will require the entire program to be relinked and then downloaded to
the test platform. To alleviate this situation, the linker has the ability to link the data separately and generate a special object
module which contains only the public symbols defined in the data link. This special object module is then linked with the
remaining object modules each time a change is made. The binary file generated by the first link can be downloaded once
and need not be downloaded again unless the data changes or becomes corrupted. To generate the special object module, the
-SQ option is used. Instead of generating a symbol file, a file with a .QCK extension is created. This file is in object module
format and contains all the symbols as ABSOLUTE equates. In addition, the -N option can be used when linking a .QCK file
to prevent the symbols defined in the .QCK file from being placed in the symbol file. This can make the symbol file
significantly smaller. For example, the following commands will create two WDC binary files the first of which will contain
data and the second of which will contain the program code.

EXAMPLE:

WDCLN -SQ -HZ -O DATA.BIN DATA1.OBJ DATA2.OBJ DATA3.OBJ
WDCLN -HZ -N -O CODE.BIN DATA.QCK CODE1.OBJ CODE2.OBJ CODE3.OBJ

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 41

Technical Notes

Considerations for when CODE section exceeds bank 00

The linker will generate an error when the size of the CODE section exceeds bank 00 (or bank 01), even if the medium
memory model is used.

To avoid this error, specify that the CODE ROM and relocatable address are the same as the DATA or KDATA ROM
address:

-zCODE –C2000 –K2000

Since the CODE section is being spread, it will skip over any fixed locations such as DATA and KDATA.

Notes on the starting address for each section in the linker output

In some cases, the linker output will always display the same starting address for each section even if the first instruction is at
the right address. For example:

Linker options:

-C2000
-ztst_conditional_test_on_char
-ztst_conditional_test_on_short
-ztst_function_branch
…….
…….
-Atst_conditional_test_on_char=2000
-Atst_conditional_test_on_short=2000
-Atst_function_branch=2000
…….
…….
-zKDATA
-K2000
-D200,
-U,
-bs
-hie
-v
-g
-sz
-t
-J

Linker output:

Section tst_function_branch:
 00002000 _BEG_TST_FUNCTION_BRANCH
 00002620 __module_1 <= section start from here!!!
 00002652 __module_2

Since each module of TST_FUNCTION_BRANCH section may be spread over several memory banks, it is not possible to
specify the start address of the section.
e.g.: module_1 may be allocated at $2500 and module_2 after next section because it does not fit into the available space in
bank0.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 42

Notes on creating a new DATA section

The C_STARTUP code clears the UDATA section. However, it may be required to have another DATA section (e.g.
SAVE_DATA) that is NOT initialized (zeroed) at startup.

For example:

#pragma section UDATA=save_data

unsigned char my_save_data_section;

#pragma section CODE=user_code_section

void my_user_code_fuction(void) {}

#pragma section CODE=CODE
#pragma section UDATA=UDATA

LINKER COMMAND FILE:

-D200,
-Asave_data=, <- this section must be declared before any code section
-C2000 <- Start code in ROM/FLASH
-Zuser_code_section <- Set SPREAD option to keep user_code_section in the same memory bank
-Auser_code_section=2000<- Set same start addr. of CODE section
-ZKDATA <- set SPREAD option for KDATA
-AKDATA=2000 <- set same start addr.

Linker output:

Sections:
org=00002000 siz=000004DC end=000024DC 'CODE'
org=00002000 siz=00000103 end=00003503 'KDATA'
org=00003503 siz=0000005E end=00003561 'DATA'
org=00000000 siz=00000192 end=00000000 'UDATA'
org=00000000 siz=00000003 end=00000000 'save_data'
org=00002000 siz=00000028 end=00002504 'user_code_section'

org=0000FF00 siz=00000044 end=0000FF44 'startup'
org=0000FFA0 siz=00000024 end=0000FFC4 'hw_options'
org=0000FFC4 siz=00000020 end=0000FFE4 'ir_vectors'
org=0000FFE4 siz=0000001C end=00010000 'cpu_vectors´

Section: ORG: ROM ORG: SIZE:
CODE 002000 002000 4DCH (1244)
KDATA 002000 002000 103H (259)
DATA 000200 003503 5EH (94)
UDATA 00025E ------ 192H (402)
save_dat 0003F0 ------ 3H (3)
user_cod 002000 002000 28H (40)

startup 00FF00 00FF00 44H (68)
hw_optio 00FFA0 00FFA0 24H (36)
ir_vecto 00FFC4 00FFC4 20H (32)
cpu_vect 00FFE4 00FFE4 1CH (28)

The new data section must be declared first. The SPREAD option must be used when new sections are declared to keep all of
them within one memory bank, if they fit.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 43

CHAPTER 8 WDCLIB (LIBRARIAN)

WDCLIB is a utility program that manipulates libraries of object modules. WDCLIB makes it possible to create a library of
commonly used functions. This library can be very efficiently searched and any modules required by the program can be
extracted from the library and placed in the output file.

Note: The standard libraries are in C:\WDC_SDS\Lib

Running the Program

The WDCLIB utility is started by giving a command with the format:

WDCLIB [-F ARGFILE] [-ADLSX] LIBRARY [OBJFILE ...]

where LIBRARY is the full or partial pathname of the library file to be created, read or modified. Since several object
modules may be contained in the same original source file, WDCLIB keeps track of the name of the file that each module
comes from. This allows all the modules associated with a file to be manipulated without tediously typing in the name of
each module. Options may be specified individually or together.

Option Summary

-A add files to library
-D delete files from library
-F specify file with arguments
-L list files in library

 -S list dictionary symbols
-X extract files from library

Option Descriptions

-A

This option tells WDCLIB to add the specified files to the library. The symbol dictionary is updated to include the names of
symbols defined in the object modules in the files. If none of the options -A, -D, or -X are given, the default is to assume
option -A. To create a library from a set of object files, use the command:

WDCLIB -A MYLIB.LIB LIBSRC1.OBJ LIBSRC2.OBJ LIBSRC3.OBJ

which will create a library file called MYLIB.LIB and add all the modules from the three object files. If MYLIB.LIB already
existed, the modules from the three object files will be added to the library.

-D

The modules in the library that originally came from the named files are deleted from the library. Modules must be deleted
before being replaced with new ones.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 44

The following example shows how to remove the modules associated with an object file.

WDCLIB -D MYLIB.LIB LIBSRC3.OBJ

All of the modules associated with the file LIBSRC3.OBJ will be deleted from the library.
 This example shows how to replace a file in a library.

WDCLIB -D MYLIB.LIB LIBSRC2.OBJ
WDCLIB -A MYLIB.LIB LIBSRC2.OBJ

The modules associated with LIBSRC2.OBJ will first be deleted from the library and then added from the new version of the
file. The following options display information about the library file after the modification arguments, if any, have been
processed.

-F

This option must be followed by the name of a text file. The file will be read and arguments will be extracted from the file.
When the end of file is reached, additional arguments are again extracted from the command line. This allows more object
modules than will fit on the standard command line to be processed at one time.
 For example, these commands add all files with a `.OBJ' extension to the library.

DIR *.OBJ > OBJLIST
WDCLIB -A MYLIB.LIB -F OBJLIST

-L

This option causes a list of the files in the library to be printed. Associated with each file name is a file number. This
number will also appear in the symbol listing which indicates which file contains the module that defines that symbol. This
command will display the names of all files added to a library.

WDCLIB -L MYLIB.LIB

This command adds two files to the library.

WDCLIB -AL MYLIB.LIB LIBSRC1.OBJ LIBSRC2.OBJ

After the files are added, a list of all the files in the library will be printed.

-S

This option causes the dictionary of symbols contained in the library to be printed. The dictionary is printed in alphabetical
order. The number of the file that defined the symbol along with the offset into the library of the module that defined it are
printed beside the symbol name.

-X

The modules in the library that originally came from the named files are extracted from the library and placed into files with
the same name. After extraction, the modules in the library are deleted.
 The following example extracts two files from a library.

WDCLIB -X MYLIB.LIB LIBSRC3.OBJ LIBSRC1.OBJ

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 45

CHAPTER 9 WDCOBJ (EXAMINE OBJECT MODULES)

The WDCOBJ utility provides a means to examine object modules created by the WDCxAS assembler. WDCOBJ will print
out the size and type of each section defined in the module, the names of all symbols defined or referenced by the object
module, and if desired, each of the data records in the file. The WDCOBJ utility is of limited usefulness to the typical
programmer and is included for completeness. Options allow control of the information displayed.

Running the Program

The WDCOBJ utility is started by giving a command with the format:

WDCOBJ [-DLRS] PATHNAME[.OBJ]

where PATHNAME is the full or partial pathname of the file that is to be examined. The file may be an object module
produced by the WDC assembler or a library file. Options may be specified individually or together.

Option Summary

-D display debug info records
-L suppress data object records
-R display object records
-S suppress symbol information

Option Descriptions

-D

This option causes display of any source debug information records present in the object module. The appropriate options
must have been specified when compiling or assembling for debug information to be present. The default is to NOT display
debug information.

-L

Normally, when the records are displayed, all the data in the record is displayed in hexadecimal format. When option -L is
specified, the data in the record is not displayed. This option is useful for examining the structure of a file without displaying
all the individual data.
 To examine the individual records in an object module but without seeing all of the data bytes, use the command:

WDCOBJ -L PROG.OBJ or WDCOBJ –L Prog
-R

This option causes display of each of the individual records in the object module. Information about the object file format is
available on request.
 To examine the individual records in an object module, use the command:

WDCOBJ -R PROG.OBJ or WDCOBJ –R Prog
-S

Normally, when WDCOBJ is run, the information for the sections is followed by the symbol information. When the -S
option is specified, the symbol information is suppressed.
The following command displays just the section names and types of all modules in the file PROG.OBJ:

WDCOBJ -S PROG.OBJ

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 46

THIS PAGE LEFT INTENTIONALLY BLANK

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 47

CHAPTER 10 WDCSYM (EXAMINE SYMBOL TABLES)

The WDCSYM utility provides a means to examine symbol files generated by the WDCLN linker. WDCSYM will print out
the sections defined in the target program and if desired the line tables, symbol records, auxiliary records and global symbols.
Note: This is only for ZARDOZ symbol files. See the WDCLN manual and the –g and –sz options.

Running the Program

The WDCSYM utility is started by giving a command with the format:

WDCSYM [-ALS] PATHNAME[.SYM]

where PATHNAME is the full or partial pathname of the file that is to be examined. The file must be a symbol file produced
by the WDC linker using the -HZ and -G options. Options may be specified individually or together.

Creating a batch file with the following line: WDCSYM filename.sym>>sym.txt, will create the file sym.txt that can be read
in Notepad.

Option Summary

-A display auxiliary table
-L display line tables
-S display global symbols

Option Descriptions

-A

This option causes the display of the auxiliary table. This table contains typing information, array sizes and other
information used in source level debugging. Only one table is present in the symbol file and is referenced by all sections and
modules.

-L

This option causes the display of the line information data for each section in the symbol file.

-S

This option causes the display of all global symbol records in the symbol file. Normally, the global symbol records are
suppressed.
The following command displays the section information, and symbols for all sections and the global symbols as well.

WDCSYM -S PROG.SYM

The basic structure of the file is outlined as follows:

File Header
Module 1 Information

Section 1 Information
…
Section N Information
Line Record Information
Symbol Record Information

Module 2 Information

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 48

…
Module N Information
…
Global Symbol Records
String Table
Auxiliary Record Table
Source File Information
End of file

Note: See Chapter 6 of the Simulator/Debugger manual for more information.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 49

CHAPTER 11 Assembly Opcodes

Standard Instructions

The following is a list of all the standard W65C816 opcode mnemonics.

adc and asl bcc
bcs beq bit bmi
bne bpl bra brk
brl bvc bvs clc
cld cli clv cmp
cop cpx cpy dec
dex dey eor inc
inx iny jml jmp
jsl jsr lda ldx
ldy lsr mvn mvp
nop ora pea pei
per pha phb phd
phk php phx phy
pla plb pld plp
plx ply rep rol
ror rti rtl rts
sbc sec sed sei
sep sta stp stx
sty stz tax tay
tcd tcs tdc trb
tsb tsc tsx txa
txs txy tya tyx
wai wdm xba xce

Alternate Instructions

The following is a table of less common aliases for standard instructions.

Alias Standard

bge bcs
blt bcc
cpa cmp A
dea dec A
ina inc A
ret rts
swa xba
tad tcd
tas tcs
tda tdc
tsa tsc
xor eor

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 50

W65C02S Instructions

The following instructions are enabled when CHIP W65C02 is enabled.

bbr0 bbr1 bbr2 bbr3
bbr4 bbr5 bbr6 bbr7
bbs0 bbs1 bbs2 bbs3
bbs4 bbs5 bbs6 bbs7
rmb0 rmb1 rmb2 rmb3
rmb4 rmb5 rmb6 rmb7
smb0 smb1 smb2 smb3
smb4 smb5 smb6 smb7

Addressing Modes

This section provides a brief description of the 24 allowable addressing modes.

IMMEDIATE OPCODE VALUE

The operand is the second byte in 8-bit mode or the second and third byte in 16-bit mode.

 ABSOLUTE OPCODE ADDR

OPCODE |ADDR

The operand is an address composed of the Data Bank register as the high-order 8 bits of a 24-bit address. The low-order 16
bits come from the second and third bytes of the instruction.

ABSOLUTE LONG OPCODE >ADDR

The operand is a 24-bit address that comes from the next three bytes of the instruction.

DIRECT OPCODE <ADDR

The operand is an address in Bank 0 that comes from adding the second byte of the instruction to the Direct Page register.

ACCUMULATOR OPCODE A

The operand is the accumulator. The effect is 8-bit if the status register M bit is 1 otherwise the effect is 16-bit. This
instruction is always one byte.

IMPLIED OPCODE

There is no operand for this addressing mode. The instruction is always one byte.

DIRECT INDIRECT INDEXED OPCODE (<ADDR),Y

The second byte of the instruction is added to the Direct Page register to determine the location in Bank 0 of a 16-bit address
that is combined with the Data Bank register to form a 24-bit address. The Y index register is added to this address to form
the final address. If the status register X bit is a 1, then 8 bits of the Y register are added otherwise 16 bits are added.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 51

DIRECT INDIRECT LONG INDEXED OPCODE [<ADDR],Y

The second byte of the instruction is added to the Direct Page register to determine the location in Bank 0 of a 24-bit address.
The Y index register is added to this address to form the final address. If the status register X bit is a 1, then 8 bits of the Y
register are added otherwise 16 bits are added.

 DIRECT INDEXED INDIRECT OPCODE (<ADDR,X)

The second byte of the instruction is added to the sum of the X register and the Direct Page register to form the Bank 0
address of a 16-bit address that is combined with the Data Bank register to form a 24-bit address.

DIRECT INDEXED WITH X OPCODE <ADDR,X

The second byte of the instruction is added to the sum of the X register and the Direct Page register to form an address in
Bank 0.

DIRECT INDEXED WITH Y OPCODE <ADDR,Y

The second byte of the instruction is added to the sum of the Y register and the Direct Page register to form an address in
Bank 0.

ABSOLUTE INDEXED WITH X OPCODE ADDR,X
OPCODE |ADDR,X

The second and third bytes of the instruction are combined with the Data Bank register to form a 24-bit address. The X
register is added to form the final 24-bit address.

ABSOLUTE LONG INDEXED WITH X OPCODE >ADDR,X

The second, third and fourth bytes of the instruction form a 24-bit address which is added to the X register to form the final
address.

ABSOLUTE INDEXED WITH Y OPCODE ADDR,Y
OPCODE |ADDR,Y

The second and third bytes of the instruction are combined with the Data Bank register to form a 24-bit address. The Y
register is added to form the final 24-bit address.

PROGRAM COUNTER RELATIVE BRANCH LABEL

The second byte of the instruction is added to the value of the program counter after the program counter has been updated to
point at the next instruction. The byte is considered a signed quantity. The resulting address is used as the new program
counter. The Program Bank register is not affected.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 52

PROGRAM COUNTER RELATIVE LONG BRL LABEL

PER LABEL

The second and third bytes of the instruction are added to the value of the program counter after the program counter has
been updated to point at the next instruction. The word is considered a signed quantity. The resulting address is used as the
new program counter for the BRL instruction. The Program Bank register is not affected. With the PER instruction, the
resulting address is pushed onto the stack.

ABSOLUTE INDIRECT OPCODE (ADDR)
OPCODE (| ADDR)

The second and third bytes of the instruction form a 16-bit address in Bank 0. The 16-bits at the specified address are loaded
into the Program Counter. If the opcode is JML, the third byte at the address in Bank 0 is loaded into the Program Bank
register.

DIRECT INDIRECT OPCODE (<ADDR)

The second byte of the instruction is added to the Direct Page register to form an address in Bank 0. The 16-bit value at the
Bank 0 address is combined with the Data Bank register to form a 24-bit address.

DIRECT INDIRECT LONG OPCODE [<ADDR]

The second byte of the instruction is added to the Direct Page register to form an address in Bank 0. The 24-bit value at the
Bank 0 address is used as the final address.

ABSOLUTE INDEXED INDIRECT OPCODE (ADDR,X)
OPCODE (| ADDR,X)

The second and third bytes of the instruction form a 16-bit address that is added to the X register to form a 16-bit address in
Bank 0. The 16-bit address at the specified Bank 0 location is loaded into the Program Counter. The Program Bank register
is not changed.

STACK OPCODE

Stack addressing refers to all instructions that push or pull data on or off the stack. It is a special case of IMPLIED.

STACK RELATIVE OPCODE <ADDR,S

The second byte of the instruction is added to the stack pointer to form a 16-bit address in Bank 0.

STACK RELATIVE INDIRECT INDEXED OPCODE (<ADDR,S),Y

The second byte of the instruction is added to the stack pointer to form a 16-bit address in Bank 0. The 16-bit value at the
address is combined with the Data Bank register to form a 24-bit address that is added to the Y register to form the final 24-
bit address.

BLOCK MVN DST,SRC
MVP DST,SRC

The second byte of the instruction is used as the destination bank number with the Y index register being the low-order 16
bits. The third byte is the source bank number with the X index register providing the low-order 16 bits.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 53

Special Cases

A few of the 65816 opcodes will accept more than one form of address. Each of the instructions and the alternates is listed
below.

MVN #src,#dst
MVN src,dst

MVP #src,#dst

MVP src,dst

PEA absolute
PEA #value

PEI (direct)
PEI direct
PEI #direct

PER label
PER #offset

JSR > address
JSL > address

JML > address
JMP > address

JML (absolute)
JMP [absolute]

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 54

THIS PAGE LEFT INTENTIONALLY BLANK

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 55

CHAPTER 12 Assembly Directives

File and Symbol Control

These directives control the organization of files, modules, sections and symbols. See the overview for a more detailed
discussion of modules and sections.

WARNING: When using long paths with spaces embedded in the path name, enclose the name in quotes! For
example, APPEND “F\WDC\SAMS PROJECTS\MACROS.INC”

APPEND [LABEL] APPEND FILENAME

This directive causes the assembler to stop reading the current file and to read lines from the specified file instead. The
original file is not returned to. Thus, this is usually the last statement in a file since any following it are ignored. The line
number counter is not reset. Filenames are read up to a space, tab, semi-colon or end of line. Filenames may also be
enclosed in single or double quotes.

EXAMPLE:

APPEND c:\src\asmend.asm ;use the common ending

INCLUDE [LABEL] INCLUDE FILENAME

This directive reads assembly language statements from the specified file. When the end of the file is reached, or an END
directive is parsed, the assembler continues with the line following the INCLUDE directive. The line numbers are started
again at 1 with each file that is included. Filenames are read up to a space, tab, semi-colon or end of line. Filenames may
also be enclosed in single or double quotes.

EXAMPLE:

INCLUDE c:\src\macros.inc ;load macros

INSERT [LABEL] INSERT FILENAME

This directive reads a binary image from the specified file and inserts it into the object module at the current program
counter. The assembler continues with the line following the INSERT directive. Filenames are read up to a space, tab,
semi-colon or end of line. Filenames may also be enclosed in single or double quotes. When searching for files, the path
specified by the -I option is used.

EXAMPLE:

INSERT c:\src\sounds.inc ; insert sound data

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 56

END [LABEL] END [VALUE]

When the END directive is encountered in a source file, no further lines are read. When the END directive is

encountered in an included file, the file is closed and the next line is read from the previous include or source file. If VALUE
is specified it is used as the starting address of the program if the output format has a record type that supports it.

EXAMPLE:

MAIN: RTS ; a very short program
END ; the end of the program

I can put anything here because the assembler never reads it.

EXIT [LABEL] EXIT TEXT

This directive displays the message to the output terminal and then causes the assembler to exit. This is typically used in a
conditional when some event triggers it.

EXAMPLE:

NUMSYMS SET NUMSYMS+1 ;add one more symbol
IF NUMSYMS>500 ;too many symbols?
EXIT Symbol table overflow!
ENDIF

MODULE MODULE MODNAME
ENDMOD ENDMOD

These directives are used to mark the beginning and end of an independent module of a program. Each module acts like an
independent file with a new symbol table. Modules are used almost exclusively when creating libraries of functions. They
allow multiple functions to be defined in the same source file. See the overview for a more detailed description of how
modules are used.

EXAMPLE:

MODULE COPYSTR ;function to copy a string
... ;function body
ENDMOD ;end of module

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 57

SECTION LABEL SECTION OPTIONS

This directive is used to define a new section type. There are five pre-defined sections with the names PAGE0, CODE,
KDATA, DATA, and UDATA. CODE is the default. See CHAPTER 3 for a discussion of these sections. Up to 250
sections may be defined. The name of the section is taken from the LABEL. Additional options may be specified to
determine the type of section being defined.
OFFSET ADDR This option makes the section an ABSOLUTE section which starts at the specified ADDR. It is equivalent
to defining a section followed by an ORG directive.

INDIRECT ADDR This is similar to OFFSET, but tells the linker to assemble the code at the specified ADDR, but to
actually place it somewhere else. This is used when generating data into ROM that will be copied to another address.

REF_ONLY This option indicates that any labels in the section are to be recorded at the correct offset, but no actual data is
generated. This is useful for creating templates or when uninitialized data is being created. Both the PAGE0 and UDATA
sections default to being REF_ONLY. Once a section has been defined, its name is added to the opcode table. Thus, the
same name can be used as a symbol as well. To add code or data to a section, the name of the section can be used as a
directive. The SECTION definition automatically causes a switch to the new section.

EXAMPLE:

MYDATA SECTION OFFSET $10000 ;define section in bank 1
MYDATA: DB $1 ;save signature byte

ENDS ;back to previous section

LDA >MYDATA ;get signature byte
CMP #1

MYDATA ;switch to MYDATA again
RMB 20 ;save some space
DB 2 ;set number of widgets
ENDS ;back to previous section

ENDS ENDS

This directive is used to undo the effect of the previous section changing directive. Sections are nested, with each section
name directive nesting a bit deeper. Sections can be nested up to 500 deep. Each ENDS directive ``un-nests'' one level.

EXAMPLE:

NOP ;start out in CODE section
 DATA ;switch to DATA
 DB 1
 UDATA ;switch to UDATA
 RMB 3
 ENDS ;back to DATA
 DB 2
 ENDS ;back to CODE
RTS

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 58

ORG [LABEL] ORG OFFSET
ORIGIN [LABEL] ORIGIN OFFSET

This directive does two things. First, it marks the current section as absolute. Second, it sets the program counter to the
specified value. All subsequent labels are defined with an absolute address. When switching sections, the ORG statement
should follow the statement that switches sections.

EXAMPLE:

DATA ;switch to the data section
ORG $200 ;set pc to hex 200
...
CODE
ORIGIN $12000 ;set code pc to 01:2000H

EQU LABEL EQU EXPRESSION
EQUAL LABEL EQU EXPRESSION

These directives set the label to the value specified by the expression. The expression may contain only one level of indirect
reference. The label has type ABSOLUTE unless equated with an expression containing a relocatable label.

EXAMPLE:

LAB1 EQU 100 ;absolute label
LAB2 EQUAL MAIN+4 ;relocatable if MAIN is relocatable

GEQU LABEL GEQU ABSOLUTE

This directive is similar to the EQU directive with two differences. First, the expression must be an absolute numerical
value. No forward reference is allowed. The second difference only affects programs which use the MODULE directive.
Symbols defined by the normal EQU directive are cleared at the beginning of each module. Symbols defined using the
GEQU directive are retained across modules.

EXAMPLE:

LAB1 GEQU 100 ;absolute label
LAB2 GEQU LAB1+4 ;also absolute

DEFL LABEL DEFL EXPRESSION

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 59

SET LABEL SET EXPRESSION
VAR LABEL VAR EXPRESSION

These directives are similar to the EQU directive in that they set a label to a particular value. However, with these directives,
the value can be changed with a later directive. The argument must be an absolute expression.

EXAMPLE:

CNT DEFL 1 ;initialize counter
CNT SET CNT+1 ;increment counter by 1
CNT VAR EDATA-BDATA ;difference is always absolute

EXTERN [LABEL] EXTERN LABEL[,LABEL...]
EXTERNAL [LABEL] EXTERNAL LABEL[,LABEL...]
XREF [LABEL] XREF LABEL[,LABEL...]

These directives declare the specified symbol(s) to be external to the current file. Any symbols which are not defined in the
current file or module and that need to be referenced must be marked external otherwise an undefined symbol error will be
given at the end of Pass 1. A single symbol name may be specified, or m
ultiple symbols may be specified separated by commas.

EXAMPLE:

EXTERN copystr ;say copystr defined elsewhere
LDA #ADDR1 ;get source address
LDX #ADDR2 ;get destination address
JSL copystring ;copy the string
EXTERN Page0 IO_UART ;give IO_UART a Page0 attribute

EXTERNS [LABEL] EXTERNS ON

[LABEL] EXTERNS OFF

When this directive is turned on, all labels that are undefined are automatically made public without using the EXTERN,
EXTERNAL or XREF directives. This directive can be used to force all undefined symbols to be external without having to
do so on an individual basis. The linker will then attempt to find matches for the symbols in other object modules.
The default is OFF.

EXAMPLE:

lda LAB1 ;an undefined label
EXTERNS ON ;turn on automatic extern
lda LAB2 ;undefined, but external

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 60

GLOBAL [LABEL] GLOBAL LABEL[,LABEL...]
PUBLIC [LABEL] PUBLIC LABEL[,LABEL...]
XDEF [LABEL] XDEF LABEL[,LABEL...]

These directives are similar to the previous set except that these indicate symbols that are defined in the current file and are
referenced by a different file. If a label is not declared global, then it will not be listed in the object module and can not be
found by the linker.

EXAMPLE:

PUBLIC copystr ;tell assembler other files can call
copystr STA <1 ;save in direct page

STX <3 ;save second pointer
loop LDA (<1) ;get byte

STA (<3) ;copy it
BEQ done ;loop if non-zero
INC <1 ;bump address
INC <3
BRA loop ;continue till done

GLOBALS [LABEL] GLOBALS ON

[LABEL] GLOBALS OFF

When this directive is turned on, all labels that are defined are automatically made global without using the GLOBAL,
PUBLIC or XDEF directives. This includes any symbols defined using EQU or SET directives. This may be a useful thing
to do when debugging a program since the linker can generate a symbol table with all symbol addresses. Only global
symbols are passed to the linker, so placing this directive as the first thing in the source file will make all labels global and
cause them to appear in the symbol table.
The default is OFF.

EXAMPLE:

LAB1: ;not a global symbol
GLOBALS ON ;turn on all globals

LAB2: ;this symbol IS global

MESSAGE [LABEL] MESSAGE TEXT
MESSG [LABEL] MESSG TEXT

This directive displays the indicated message text during Pass 2 of the assembly process. One use would be inside of
conditionals to indicate that a certain set of conditions exist. Another use is as a reminder of what options to use when
linking.

EXAMPLE:

IF NUM>10
MESSAGE More than 10 widgets!
ENDIF
MESSG Don't forget to use -HM28!

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 61

EFUNC EFUNC

This directive serves only as a placeholder to mark the end of a C function generated by the compiler. It is used by the post-
pass peephole optimizer that works on a single function at a time.

EXAMPLE:

EFUNC

INCDEBUG [LABEL] INCDEBUG ON

[LABEL] INCDEBUG OFF

When the assembler is directed to generate source level information, it does so for the original source file and any included
source files. Since many included source files contain only equates and symbol definitions, source information isn't very
useful and takes additional space and time to produce. When this directive is turned on, source information is generated for
included files. If INCDEBUG is off, no source information is produced. This directive cannot be nested. The default is
ON.

EXAMPLE:

INCLUDE "j1.inc" ;source info for this file
INCDEBUG OFF ;turn off source info
INCLUDE "j2.inc" ;no source info for this file

Parsing Control

The directives in this section control how the opcodes and opcode arguments are parsed.

CASE [LABEL] CASE ON
[LABEL] CASE OFF

This directive controls whether symbol names are case sensitive or not. If the directive is ON, all symbol names are recorded
exactly as defined. If the directive is OFF, all symbol names are mapped to lower case. The default is ON.

EXAMPLE:

Lab1:
BRA LAB1 ;generates an error

CASE OFF

Lab2:
BRA LAB2 ;no error generated

CHIP

[LABEL] CHIP 65C02
[LABEL] CHIP W65C02S
[LABEL] CHIP 65816

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 62

This directive controls which set of opcodes and addressing modes is to be used. The valid values for type are 65C02,
W65C02S, and 65816. The W65C02S option enables the extra BBRx, BBSx, RMBx and SMBx instructions. The default
for WDC816AS is 65816. The default for WDC02AS is W65C02S. The Rockwell version of the W65C02S does not
support the WAI and STP instructions.

EXAMPLE:

CHIP 65816 ;start in native mode
SEC ;set carry for emulation mode
XCE ;go into emulation mode
CHIP 65C02 ;don't want to use any 65816 codes

CHKIMMED [LABEL] CHKIMMED ON

[LABEL] CHKIMMED OFF

This directive controls whether an error is generated when an immediate load to a register is larger than will fit in the register.
Legal values range from -127 to 255 for a short register and -32767 to 65535 for a long register. The default is OFF, which
will not generate an error.

EXAMPLE:

LONGA OFF
CHKIMMED OFF

LDA #$101 ; no error generated

CHKIMMED ON
LDA #$101 ; generates an error

COMMENT [LABEL] COMMENT CHAR

This directive is used to specify a block of lines as all being comments. The character argument of the COMMENT
directive is used as an end marker. Lines are treated as comments until a line is encountered which contains the end marker
character.

EXAMPLE:

COMMENT #
these lines are
all just comments
this is the last line #

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 63

DBREG [LABEL] DBREG [VALUE]

This directive is used to indicate to the assembler the run-time value of the Data Bank register. Normally, when the DBREG
directive has been used, if a symbol is referenced without a specific addressing mode, the assembler will generate long
absolute reference. When this directive is used, the assembler can check for references to absolute symbols that are defined
in the indicated data bank and generate a two-byte absolute reference instead.

EXAMPLE:

A EQU $1:0000
B EQU $2:0000

DBREG $2
LDA A ;long absolute address used
LDA B ;absolute address used

DPAGE [LABEL] DPAGE [VALUE]

This directive is used to indicate to the assembler the run-time value of the Direct Page register. Normally, when the
DPAGE directive has been used, if a symbol is referenced without a specific addressing mode, the assembler will generate an
absolute reference. When this directive is used, the assembler can check for references to absolute symbols that are defined
in the current direct page and generate a one-byte direct page reference instead.

EXAMPLE:

A EQU $24
B EQU $34

DPAGE $30
LDA A ;absolute address used
LDA B ;direct page address used

LONGA [LABEL] LONGA ON (Default)

[LABEL] LONGA OFF

This directive is used to indicate to the assembler the size of the accumulator. This tells the assembler to generate 16 bit
versus 8 bit immediate values when the accumulator is involved. The ONLY effect this directive has concerns immediate
operands. The X and Y registers are not affected.
The default is ON.

EXAMPLE:

LONGA ON
LDA #0 ;this will generate two bytes of zero
LONGA OFF
LDA #0 ;this will generate one byte of zero

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 64

LONGI [LABEL] LONGI ON (Default)

[LABEL] LONGI OFF

This directive is used to indicate to the assembler the size of the X and Y index registers. This tells the assembler to generate
16 bit versus 8 bit immediate values when these registers are involved. The ONLY affect this directive has concerns
immediate operands. The accumulator is not affected.
The default is ON.

EXAMPLE:

LONGI ON
LDX #0 ;this will generate two bytes of zero
LONGI OFF
LDY #0 ;this will generate one byte of zero

RADIX [LABEL] RADIX NUM

[LABEL] RADIX CHAR

This directive changes the default radix for numbers in the operand field of instructions and directives. The default radix is
decimal, so numbers that do not have a binary, octal or hexadecimal qualifier will be interpreted as decimal numbers. For
example, the number `10' can be either 2, 8, 10, or 16 depending on the default radix. The radix can be specified as the
number of the base, or by the letter that acts as the qualifier for that base. The following table summarizes the possible
choices for the RADIX directive.

B 2 Binary
O,Q 8 Octal
D 10 Decimal
H 16 Hexadecimal

Note that the arguments to the RADIX directive are always assumed to be decimal numbers. If the radix is set to
hexadecimal, then it is not possible to indicate binary or decimal numbers by using a trailing B or D since they will be
considered part of the hexadecimal number.

EXAMPLE:

RADIX Q ;octal base
LDA #16 ;octal 16 == decimal 14
LDA #16D ;decimal 16 == decimal 16
RADIX 16 ;hexadecimal base
LDA #16 ;hex 16 == decimal 22
LDA #16D ;hex 16D == decimal 365

SPACES [LABEL] SPACES ON (Default)

[LABEL] SPACES OFF

This directive determines whether spaces or tabs are allowed between the elements of an instruction operand. If SPACES
are OFF, then there can be no blanks or tabs between parts of the operand. Otherwise, the first space or tab will be
interpreted as the end of the operand and the rest of the line will be treated as a comment.

EXAMPLE:

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 65

LDA ADDR , X

will be interpreted as just:

LDA ADDR

with `, X' as a comment.

If SPACES are ON, then the preceding example would be handled correctly. However, consider the following example:

LDA ADDR /NOTE

With SPACES turned OFF, the `/NOTE' would be considered a comment. With SPACES turned ON, the assembler will
assume that the value of `ADDR' should be divided by the value of `NOTE'. When SPACES are ON, you must always use a
semi-colon to begin a comment.
 The default is OFF.

LLCHAR [LABEL] LLCHAR CHAR

This directive changes the character that is used to denote a temporary label. The default is the `?' character.

EXAMPLE:

LLCHAR /
/1 NOP

BRA /1
Data Definition Control

These directives are used to place data into the output file. The first few directives are used to affect individual bits of string
operands. Data can be placed as bytes, words, or long words.

BIT7 [LABEL] BIT7 ON
[LABEL] BIT7 OFF

When enabled, this directive causes bit 7 of any bytes generated by the ASCII directive or by string arguments to the BYTE,
DB, DEFB, FCB and STRING directives. The default is OFF.

EXAMPLE:

DB 'A' ;generates a hex 41 byte
BIT7 ON
DB 'A' ;generates a hex C1 byte

MASK [LABEL] MASK AND_VALUE,OR_VALUE,SUB_VALUE

This directive allows precise bit control over all characters generated by a string argument to a data directive. Each byte in a
string argument is bitwise-ANDed with the AND_VALUE and then bitwise-ORed with the OR_VALUE and then the
SUB_VALUE is subtracted. The default is AND_VALUE = $FF, OR_VALUE = $00, and SUB_VALUE = $00.

EXAMPLE:

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 66

DB 'A' ;generates a hex 41 byte
MASK $FF,$20 ;convert to lower case
DB 'A' ;generates a hex 61 byte (`a')
MASK $DF,$00 ;convert to upper case
DB 'b' ;generates a hex 42 byte (`B')
MASK $FF,$00,$41 ;convert to alpha offset
DB 'G' ;generates a hex 7

SQUOTE [LABEL] SQUOTE ON

[LABEL] SQUOTE OFF

This directive controls how quoted strings are handled when used as the argument to any of the data definition directives.
When SQUOTE is ON, a single quote character begins the string and the string continues to the end of the line. When
SQUOTE is OFF, a second single quote is required to terminate the string. The default is OFF.

EXAMPLE:

DB 'this line is ok'
DB 'this line will generate an error
SQUOTE ON
DB 'this line is now ok

TWOCHAR [LABEL] TWOCHAR ON

[LABEL] TWOCHAR OFF

This directive enables certain two character combinations enclosed in quotes to be interpreted as a single non-printable
character. The following table displays the combinations, their hex value and what they represent.

CR $0D Carriage return
HT $09 Horizontal tab
LF $0A Line feed
NL $00 Null
SP $20 Space

The default is OFF.

EXAMPLE:

; the following line starts with a tab
TWOCHAR ON

LINE: DB 'HT','A line','CR','LF','NL'
; and ends with a standard line ending
; and a terminating null

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 67

ASCII ASCII TEXT
ASC ASC TEXT

This directive stores it's argument in successive bytes of memory. The string starts with the first character that is not a blank
or a tab and continues till either the end of the line or the | character is encountered. This means that comments will be taken
as part of the string unless the | character is used. The string does not need to be enclosed within ' characters.

EXAMPLE:

ASCII This is a short string. ;Not part of string!
ASCII This is a test. ;This is part of the string too!

FCC [LABEL] FCC CHAR TEXT CHAR

This directive stores it's string argument in successive bytes of memory. This directive allows more control than the ASCII
directive in beginning and terminating its argument. The first non-blank character found is read and used as the terminating
character of the string. The terminating characters are not considered part of the string.

EXAMPLE:

FCC /this is a 'string'/ ;easy way to include quotes

DATE [LABEL] DATE

This directive outputs the bytes that correspond to the current date in the format:

DDD MMM DD YYYY HH:MM

where DDD is the day of the week, MMM is the month, DD is the day of the month, YYYY is the year, and HH:MM is the
time in hours and minutes.

EXAMPLE:

FCC /Today's date is / ;first part
DATE ;second part
DB $D,$A,0 ;last part

DA [LABEL] DA [VALUE,...]

This directive is used to generate a three-byte address. Multiple values may be used, separated by commas. If no values are
specified, three null bytes are generated.

EXAMPLE:

DA ;generate three null bytes
DA 1 ;generate three bytes (1,0,0)
DA LAB ;generate three-byte address
DA LAB1,LAB2 ;generate two three-byte addresses

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 68

BYTE [LABEL] BYTE [VALUE,...]
DB [LABEL] DB [VALUE,...]
DEFB [LABEL] DEFB [VALUE,...]
FCB [LABEL] FCB [VALUE,...]
STRING [LABEL] STRING [VALUE,...]

These directives generate byte data. Multiple values may be used, separated by commas. A value may also be a string of
characters enclosed in either single or double quotes. If no values are specified, one null byte is generated.

EXAMPLE:

BYTE ;generate a single null byte
DB 1 ;generate a byte with value $01
DEFB 1,'abc',0 ;generate 5 bytes
FCB LAB,0 ;generate 2 bytes
STRING 1,2,3 ;works just like BYTE

DC [LABEL] DC [VALUE,...]

The DC directive is very similar to the BYTE directives. However, the last byte generated by the DC directive will have the
high order bit set. This is often used to indicate the end of a string. If no values are specified for the DC directive, one byte
of $80 is generated.

EXAMPLE:

DC 'abc' ;generates $61,$62,$E3
DEFW [LABEL] DEFW [VALUE,...]
DW [LABEL] DW [VALUE,...]
FDB [LABEL] FDB [VALUE,...]
WORD [LABEL] WORD [VALUE,...]

These directives generate word data. Each argument generates two byes with the low byte first followed by the high byte.
Multiple values may be used, separated by commas. If no argument is specified, then a null word is generated.

EXAMPLE:

DEFW ;generates $00,$00
DW 1 ;generates $01,$00
FDB 1,2 ;generates $01,$00,$02,$00

DBYTE [LABEL] DBYTE [VALUE,...]

This directive also generates word data. However, this directive stores the high byte first, while the others store the low byte
first. Multiple values may be used, separated by commas. If no argument is specified, then a null word is generated.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 69

EXAMPLE:

DBYTE ;generates $00,$00
DBYTE 1,2 ;generates $00,$01,$00,$02

DL [LABEL] DL [VALUE,...]
LONG [LABEL] LONG [VALUE,...]
LONGW [LABEL] LONGW [VALUE,...]
LWORD [LABEL] LWORD [VALUE,...]

These directives generate long word data. Values are stored with the low byte first. Multiple values may be used, separated
by commas. If no values are specified, one long word of zero is generated.

EXAMPLE:

DL ;generates $00,$00,$00,$00
LONG 1 ;generates $01,$00,$00,$00
LONGW 2,3 ;generates $02,$00,$00,$00,$03,$00,$00,$00

BLKB [LABEL] BLKB NUM[,VALUE]
BLKW [LABEL] BLKW NUM[,VALUE]
BLKL [LABEL] BLKL NUM[,VALUE]

These directives generate a sequence of constant data. BLKB fills with an eight-bit value, while BLKW uses a sixteen-bit
value and BLKL uses a thirty-two bit value. Values are stored low byte first. If the VALUE is not specified, then zero is
used.

EXAMPLE:

BLKB 3,$FF ;stores 3 bytes of $FF
BLKW 5 ;stores 5 words or 10 bytes of zero
BLKL ;stores 1 long word or 4 zero bytes

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 70

DEFS [LABEL] DEFS VALUE
DS [LABEL] DS VALUE
RMB [LABEL] RMB VALUE

These directives reserve the specified number of bytes in the output file. It is equivalent to storing a large number of zeros
but without taking up any space in the object module file. Zeros will be generated by the linker unless the section is
reference only.

EXAMPLE:

DEFS 0 ;don't save any space at all
DS 1 ;save one byte of memory
RMB 100H ;save 256 bytes of memory

DSA [LABEL] DSA VALUE
DSB [LABEL] DSB VALUE
DSL [LABEL] DSL VALUE
DSW [LABEL] DSW VALUE

These directives reserve a specified number of bytes in the output file. It is equivalent to storing a large number of zeros but
without taking up any space in the object module file. Zeros will be generated by the linker unless the section is reference
only. DSB will generate VALUE bytes of space. DSW will generate VALUE times 2 bytes of space. DSA will generate
VALUE times 3 bytes of space. DSL will generate VALUE times 4 bytes of space.

EXAMPLE:

DSB 0 ;don't save any space at all
DSW 1 ;save two bytes of memory
DSA 2 ;save six bytes of memory
DSL 1 ;save four bytes of memory

APWDC

This directive emulates the APW DC directive and is included for compatibility.

FLOAT [LABEL] FLOAT [VALUE,...]
DOUBLE [LABEL] DOUBLE [VALUE,...]

These directives generate floating point data in IEEE format. Values are stored with the low byte first. Multiple values may
be used, separated by commas. If no values are specified, one long word of floating point zero is generated.

EXAMPLE:

FLOAT ;generates $00,$00,$00,$00
FLOAT 1 ;generates $00,$00,$80,$3f
DOUBLE ;generates $00,$00,$00,$00,$00,$00,$00,$00
DOUBLE 1 ;generates $00,$00,$00,$00,$00,$00,$f0,$3f

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 71

Macro Control

Thes directives are used to implement and control MACRO definition and execution. A complete discussion can be found in
CHAPTER 5.

MACRO LABEL MACRO [ARG1,...]

This directive is used to define a macro. The LABEL is required and becomes the name of the macro. Any arguments
specified will be substituted within the body of the macro. See CHAPTER 5 for more information. Macro definitions must
end with a MACEND or ENDM statement.

ENDM ENDM
MACEND MACEND

These directives are used to indicate the end of the macro body. All of the macro body up to the ENDM or MACEND
directive will be saved. When the macro is invoked, execution may actually terminate somewhere within the macro body by
using the MACEXIT directive, Otherwise, execution terminates when the end of the macro body is reached. These
directives can not have a LABEL.

EXAMPLE:

COMP MACRO ARG1,ARG2 ;begin definition
LDA ARG1 ;get first value
CMP ARG2 ;compare to second
ENDM ;end definition

ARGCHK [LABEL] ARGCHK ON
[LABEL] ARGCHK OFF

This directive tells the assembler whether or not to give an error if the number of arguments passed to a macro differs from
the number of arguments with which the macro was defined. The default is ON.

EXAMPLE:

TEST MACRO ARG1,ARG2 ;define dummy macro with 2 args
NOP
MACEND
TEST 1,2 ;this is okay
TEST 1 ;this will generate an error
ARGCHK OFF ;turn off checking, default was ON
TEST 1 ;now it won't

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 72

MACFIRST [LABEL] MACFIRST ON

[LABEL] MACFIRST OFF

This directive tells the assembler whether or not to generate an error when a macro definition overrides an opcode, directive
or section name. When MACFIRST is OFF, an error is generated. When MACFIRST is ON, a macro can replace an
opcode, directive or section name. The default is OFF.

EXAMPLE:

MACFIRST ON
LIST MACRO ;dummy macro that replaces LIST

MACEND

MACDELIM [LABEL] MACDELIM char"7B

[LABEL] MACDELIM (
[LABEL] MACDELIM [

This directive specifies a delimiter character for macro arguments. Normally, a macro argument consists of all character up
to but not including a comma. If you wish to include a comma within an argument, you must select an argument delimiter.

This delimiter can be used to begin an argument with it's corresponding character acting as the end of the argument. Multiple
arguments must still be separated with a comma outside of any delimiters. Not all arguments to a macro need be delimited.

EXAMPLE:

MACDELIM { ;set delimiters to {}
COMP {TMP,X},TMP ;using ,X requires delimiters

MACEXIT [LABEL] MACEXIT

This directive is used to terminate execution of a macro. It can occur anywhere within the macro body.

EXAMPLE:

COPY MACRO ADDR1,ADDR2 ;define COPY macro
IF ARG1=ARG2 ;if same address,
MACEXIT ; no need to copy
ENDIF
LDA ADDR1 ;get value
STA ADDR2 ;copy it
MACEND

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 73

IFMA IFMA ARGNUM
IFNMA IFNMA ARGNUM

This conditional must occur within a macro since it tests whether a given argument number exists. When a macro is invoked,
the number of macro arguments passed is counted. This conditional allows the programmer to test if certain arguments are
passed or not and generate the appropriate code. There is a special case if the ARGNUM is zero. This is a check to see if
there are any arguments at all.

EXAMPLE:

ADD MACRO SRC1,SRC2,DST ;dst=s1+s2 or s2=s1+s2
CLC
LDA SRC1 ;get value
ADC SRC2 ;add together
IFMA 3 ;do we have DST?
STA DST ;yes, so store it
ELSE ;no, so ..
STA SRC2 ; .. put in SRC2
ENDIF
ENDM

DWORDS MACRO VAL,NUM ;define DWORDS macro

IFNMA 0 ;no args?
EXIT DWORDS called without arguments!!
ENDC
DEFW VAL,NUM
MACEND

REPT REPT CNT
ENDR ENDR

This directive allows controlled repetition of assembly statements. The argument to the REPT directive specifies the number
of times to repeat the sequence of assembly lines. The sequence is terminated by an ENDR directive. This directive cannot
be nested.

EXAMPLE:

REPT 400
DB $ff
ENDR

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 74

Conditional Control

The directives in this section are used to perform conditional assembly. Most conditional assembly occurs within macros.
More information on conditionals may be found in CHAPTER 5,which talks about macros and conditionals. All of the
conditionals, the ELSE, ENDC and ENDIF statements can NOT have a label.

ENDC NDC
ENDIF ENDIF

Statements following a conditional test are parsed or skipped until an ENDC, ENDIF or ELSE is encountered. If an ENDC
or ENDIF is encountered, then the conditional terminates.

COND COND EXPRESSION
IF IF EXPRESSION
IFFALSE IFFALSE EXPRESSION
IFNFALSE IFNFALSE EXPRESSION
IFTRUE IFTRUE EXPRESSION
IFNTRUE IFNTRUE EXPRESSION
IFZ IFZ EXPRESSION
IFNZ IFNZ EXPRESSION

These directives are all variations on the same theme. Basically, what they do is determine whether the EXPRESSION is
zero or non-zero. If the expression is non-zero, then the directives IF, IFNZ, COND, IFTRUE and IFNFALSE will all be
true with the others false. If the expression is zero, then the directives IFZ, IFFALSE and IFNTRUE will be true with the
first set false.
EXAMPLE:

IFNZ SIZE ;do we have any space to save?
RMB SIZE ;yes, save the space
ENDIF

ELSE ELSE

Statements following a conditional test are parsed or skipped until an ENDC, ENDIF or ELSE is encountered. If an ELSE
is encountered, then the following statements are skipped or parsed until an ENDC or ENDIF is encountered. Any IF
ELSE ENDIF sets that are nested will be skipped as well.

EXAMPLE:

IF SIZE>2 ;bigger than a word?
LONG 0 ;yes, define long value
ELSE
WORD 0 ;no, define word value
ENDIF

NOTE: No spaces allowed in the conditional equation (i.e., size>2)

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 75

IFABS IFABS LABEL
IFNABS IFNABS LABEL
IFREL IFREL LABEL
IFNREL IFNREL LABEL

These directives are used to determine if a particular symbol has been defined as absolute or relative. Labels are created two
ways. The first way is to mark the current location of an opcode or directive within a section. If the section within which the
label is located is ABSOLUTE, then the label is ABSOLUTE. If the section is RELATIVE, then the label is RELATIVE.
The second way symbols are defined is through the EQU directive. If the operand of the EQU directive is ABSOLUTE,
then the label is absolute. If the operand is RELATIVE, then the label is RELATIVE. If the symbol is not in the symbol
table or is undefined, an error is registered.

EXAMPLE:

LAB1 EQU 3 ;constant is ABSOLUTE
LAB2 EQU EDATA-BDATA ;label-label is always ABSOLUTE
LAB3 EQU BDATA+3 ;if BDATA is RELATIVE, so is LAB3

IFABS LAB1 ;true
IFNABS LAB2 ;false
IFREL LAB3 ;true if BDATA is RELATIVE
IFNREL LAB1 ;true

IFDEF IFDEF LABEL
IFNDEF IFNDEF LABEL

The symbol table is searched for the specified symbol name. If found, the symbol is considered defined. Symbols are
defined by being used as a label within a section or by using the EQU or SET directives.

EXAMPLE:

DEBUG EQU 1 ;turn on debugging

IFDEF DEBUG ;is debugging on?
PEA #MESSAGE ;yes, so push message
JSR PRINT ;and print it
ENDIF

IFDIFF IFDIFF STR1,STR2
IFNDIFF IFNDIFF STR1,STR2
IFSAME IFSAME STR1,STR2

IFNSAME IFNSAME STR1,STR2

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 76

This conditional compares the two strings that are the arguments. Case IS significant, which is to say that `a' is not the same
as `A'. The strings may not contain white space unless enclosed with single or double quotes. If the two strings are identical,
then IFSAME and IFNDIFF will be true and IFDIFF and IFNSAME will be false. This directive is most often used inside
of a macro.

EXAMPLE:

CHK MACRO WHICH,VALUE ;define CHK macro
IFSAME NAME,word ;if comparing a word
CMP #VALUE ;just do it
ELSE ;otherwise
SEP #$20 ;go to 8 bit mode
LONGA OFF ;tell assembler
CMP #VALUE ;do the compare
REP #$20 ;back to 16 bit mode
LONGA ON
ENDIF
MACEND

CHK word,0
CHK byte,4

IFEXT IFEXT LABEL
IFNEXT IFNEXT LABEL

The specified symbol is checked to see if has been marked as external. The directives GLOBAL, PUBLIC, XDEF,
EXTERN, EXTERNAL and XREF are used to mark a symbol as external. The GLOBALS directive is used to mark all
symbols as external or not. An error is generated if the symbol is not defined.

EXAMPLE:

LAB1:
XREF LAB1

LAB2:
IFEXT LAB1 ;true
IFEXT LAB2 ;false
IFNEXT LAB2 ;true

IFPAGE0 IFPAGE0 LABEL
IFNPAGE0 IFNPAGE0 LABEL

This conditional is true if the symbol specified has been defined in a PAGE0 section. Symbols defined in a PAGE0 section
are used for direct page addressing in the 65816 core parts. This conditional provides a mechanism to generate two different
sequences of code depending on whether the symbol is located in the direct page. If the symbol is not in the symbol table, an
error is generated. I.e. for the 6502, it means address $00-$FF. For the 65816, it means address $00:0000 - $00:FFFF.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 77

EXAMPLE:

GETVAL MACRO ADDR ;define GETVAL macro
IFPAGE0 ADDR ;is symbol direct page?
LDA (ADDR) ;yes, use it
ELSE
LDA ADDR ;no, so copy value
STA <0 ; to the direct page
LDA (0) ;and use it there
ENDIF
MACEND

IFLONGA IFLONGA
IFLONGI IFLONGI
IFSHORTA IFSHORTA
IFSHORTI IFSHORTI

This conditional tests the state generated by the LONGA and LONGI directives.

EXAMPLE:

IFLONGA
LONGA OFF

ENDIF

IFMATCH IFMATCH STR1,STR2,CNT

This conditional compares two strings specified by STR1 and STR2 for CNT characters.

EXAMPLE:

LOAD MACRO ARG,VAL
IFMATCH ARG,"R0",2
LDA #VAL
ELSE
LDA #>VAL
ENDIF
ENDM

LOAD R0,3

Listing Control

The directives in this section control the appearance of the listing file generated with the -L option to WDCxAS.

PL [LABEl] PL VALUE

This directive sets the page length for the listing file. The default is 61 but the first PL directive encountered during Pass 1
will be used for the first page.
EXAMPLE:

PL 66 ;set my page length

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 78

PW [LABEl] PW VALUE

This directive sets the page width for the listing file. The default is 78 but the first PW directive encountered during Pass 1
will be used for the first page.

EXAMPLE:

PW 132 ;use a wide carriage printer

TOP [LABEL] TOP VALUE

This directive specifies the number of blank lines to be printed at the top of each page before the date and page number line.
The default is 0, but the first TOP directive encountered during Pass 1 will override the default for the first page.

EXAMPLE:

TOP 5 ;leave some room at top for binding

HEADING [LABEl] HEADING TEXT
NAM [LABEl] NAM TEXT
TITLE [LABEl] TITLE TEXT
TTL [LABEl] TTL TEXT

This directive is used to indicate the text of the title that is to be printed at the top of each page. If none of these directives is
ever encountered, then there will be no title line printed. The first of these directives detected during Pass 1 will be saved and
used to title the first page. If you do not wish a title on the first page, use a an empty HEADING directive before the first
real HEADING directive. The first two blanks or tabs following the directive will be skipped. Any remaining blanks or tabs
will be used to print the title. This allows the title to be centered.

EXAMPLE:

HEADING This is my heading ; this is part of it, too!
TITLE Centered heading.

STTL [LABEl] STTL TEXT
SUBTITLE [LABEl] SUBTITLE TEXT

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 79

SUBTTL [LABEl] SUBTTL TEXT

This directive is used to indicate the text of the subtitle that is to be printed at the top of each page below the title line. If
none of these directives is ever encountered, then there will be no subtitle line printed. The first of these directives detected
during Pass 1 will be saved and used to subtitle the first page. If you do not wish a subtitle on the first page, use a an empty
SUBTITLE directive before the first real SUBTITLE directive. The first two blanks or tabs following the directive will be
skipped. Any remaining blanks or tabs will be used to print the subtitle. This allows the subtitle to be centered.

EXAMPLE:

SUBTITLE This is my subtitle ; this is part of it, too!
STTL Indented subtitle

EJECT [LABEl] EJECT
PAG [LABEl] PAG
PAGE [LABEl] PAGE

This directive outputs a form-feed to the listing file causing a new page to be started.

EXAMPLE:

ENDS ;end of previous section
EJECT ;start new section on new page
DATA ;start new section

LIST [LABEl] LIST ON
NLIST [LABEl] LIST OFF
NOLIST [LABEl] NLIST

[LABEl] NOLIST

This directive controls the listing of assembly language statements to the listing file. If the -L option has not been specified,
no listing file is produced. This can be used to suppress the listing of INCLUDE files or other sets of data statements. See
the following INCLIST directive as well. The default is ON.

EXAMPLE:

NOLIST ;no macros in listing
INCLUDE MACROS.INC ;parse the macros
LIST ON ;turn listing back on

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 80

INCLIST [LABEl] INCLIST ON

[LABEl] INCLIST OFF

This directive controls whether include files are listed in the listing file. The default is ON.

EXAMPLE:

INCLIST OFF ;no macros in listing
INCLUDE MACROS.INC ;parse the macros

;remaining lines will list

ASCLIST [LABEl] ASCLIST ON
[LABEl] ASCLIST OFF

This is one of the directives that control how listings are generated. When a listing is created, the actual bytes that are
generated for instructions and directives are output as hexadecimal values. When ASCLIST is ON, assembly directives that
generate more than four bytes of data will display the additional values on as many additional lines as are necessary. When
ASCLIST is OFF, only the first line of values is displayed. All values will be generated into the output file, only the display
is truncated. The default is ON.

EXAMPLE:

1 00:0000: 61 62 63 64 DB 'abcdefg'
00:0004: 65 66 67

2 ASCLIST OFF
3 00:0007: 61 62 63 64 DB 'abcdefg'
4 00:000E: EA NOP

CONDLIST [LABEl] CONDLIST ON

[LABEl] CONDLIST OFF

This directive controls the printing of conditionals that are not executed. For example, if an IF statement is false, any lines
up to an ELSE or ENDIF or ENDC directive are not parsed by the assembler. If CONDLIST is ON, then these lines will
be printed to the listing file if listing is activated. If CONDLIST is OFF, then these lines are not printed. When the
conditional is true, then the lines are always printed. The default is ON.

EXAMPLE:

1 IF 0
2 NOP
3 ELSE
4 00:0000: 60 RTS
5 ENDIF
6
7 CONDLIST OFF
8 IF 0
10 ELSE
11 00:0001: 60 RTS
12 ENDIF

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 81

MACLIST [LABEl] MACLIST ON
MLIST [LABEl] MACLIST OFF
MNLIST [LABEl] MLIST

[LABEl] MNLIST

This directive controls the listing of expanded macros. When a macro is invoked, the invoking line is displayed, followed by
each line of the macro as it is parsed by the assembler. Each expanded macro line is precede by a `+' symbol. If the macro
exits with a MACEXIT directive, the remaining lines of the macro are not listed. The default is ON.

EXAMPLE:

1 NULL MACRO SIZE
2 IF SIZE=2
3 DW 0
4 ELSE
5 DL 0
6 ENDIF
7 MACEND
8
9 NULL 2

+ 9 IF 2=2
+ 9 00:0000: 00 00 DW 0
+ 9 ELSE
+ 9 DL 0
+ 9 ENDIF

10 MACLIST OFF
11 00:0002: 00 00 00 00 NULL 4

PASS1 [LABEl] PASS1 ON

[LABEl] PASS1 OFF

This directive controls whether a listing is generated during Pass 1. This is useful for checking macros and tracking down
syntax errors. The default is OFF.

EXAMPLE:

1 PASS1 ON
2 xxxxxxxx BB EQU CC
3 00:0000: DB BB
4 00000001 CC EQU 1

1 PASS1 ON
2 00000001 BB EQU CC
3 00:0000: 01 DB BB
4 00000001 CC EQU 1

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 82

Appendix A Assembler Error Messages

Fatal Errors

Premature end of file in conditional.

After a conditional directive is encountered such as .IF, if the end of the file is
encountered before an end conditional is encountered it is considered a fatal
error.

Modules must start and end in original file!

A MODULE or ENDMOD directive has been encountered within an included file.

Unable to start new module without ENDMOD.

A new MODULE directive has been encountered before the old module was terminated
with an ENDMOD directive.

Need module name here.

A new MODULE directive has been detected without a name for the module immediately
following it.

More than one input file specified!

The assembler only assembles a single file at a time. If more than one input file
name is specified, this error is generated.

More than one output name.

Only one output or list file can be specified.

Out of memory!

The assembler was unable to allocate memory for an operation.

No input file specified!

The assembler needs an input file name to be passed as an argument when the
assembler is invoked.

Can't open input file <FILE>.

The assembler was unable to open the file, FILE, for reading.

Can't open output file <FILE>.

The assembler was unable to open the output file, FILE, for writing.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 83

Can't open listing file <FILE>.

The assembler was unable to open the listing file, FILE, for writing.

Too many -I options.

The assembler allows for at most 16 -I include path options.

Includes nested too deep.

The assembler allows include files to be nested at most fifty deep.

Unable to reopen 'FILE' after INCLUDE!

The assembler only opens one file at a time when handling include files. After it
finishes a file, it reopens the previous file and seeks to where it left off. If
the previous file can't be opened, this error is generated.

Input line longer than 512 characters!

The assembler only allows input lines up to 512 characters in length.

Missing MACEND or ENDM in macro definition.

If an end-of-file is encountered during a macro definition before the macro
definition is terminated by a MACEND or ENDM directive, this error is generated.

Macro nested more than 256 deep!

Macros may be nested at most 256 deep in the assembler.

Macro arguments too long!

Macro arguments may be up to 128 characters in length.

Reference to undefined macro argument!

If a reference is made to a macro argument that is not defined as an argument to
the macro, it is an error.

Expanded macro line longer than 512 characters!

After macro expansion, the resulting line may not be longer than 512 characters.

REPT line longer than 512 characters!

A REPT directive may not expand to more than 512 characters.

Missing ENDREPT in REPT definition.

If an end-of-file is encountered during a REPT definition before the REPT
definition is terminated by an ENDREPT directive, this error is generated.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 84

Error writing to object file.

If an error occurs while writing to the output file, this error is generated.

Label value different between pass 1 and 2!

This is an internal error which is generated when a label value has a different
value on pass 2 than on pass1. This is a safety check that nothing changes size
between pass 1 and pass 2.

Error writing to listing file.

This is generated if writing to the listing file returns an error.

Exceeded maximum of 256 sections!

The assembler supports a maximum of 256 different sections.

Max of 500 nested sections exceeded!

The assembler allows nested section directives, but only up to 500.

Imbalance in nested sections.

If an ENDS directive is encountered without a corresponding section directive, this
error is generated.

Non-Fatal Errors

Need symbol name here!

A symbol name must follow an IFDEF or IFNDEF directive.

Missing comma and second argument.

The IFDIFF, IFSAME, IFNDIFF and IFNSAME directives need two arguments separated by
a comma.

Conditional requires symbol name.

The IFEXT, IFABS, IFREL, IFPAGE0, IFNEXT, IFNABS, IFNREL, IFNPAGE0 directives must
be followed by a symbol name.

Unknown symbol in conditional.

The IFEXT, IFABS, IFREL, IFPAGE0, IFNEXT, IFNABS, IFNREL, IFNPAGE0 directives must
be followed by a defined symbol name.

This conditional only valid inside a macro.

The IFMA and IFNMA directives are only valid within the body of a macro definition.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 85

Need start,size for INSERT!

The INSERT directive must be followed by the name of the file to insert, the
location to insert it and the size.

Couldn't open binary file 'FILE'!

The INSERT directive was unable to open the file specified for insertion.

Symbol required.

The EXTERN, EXTERNAL, XREF, GLOBAL, PUBLIC, and XDEF directives must be followed by
at least one symbol and only by symbols.

Label is required for directive.

The EQU, EQUAL, GEQU, DEFL, SET and VAR directives must be preceded by a label.

Label type redefined.

The DEFL, SET and VAR directives may not redefine a label previously defined.

Can't redefine type of label.

The EQU, EQUAL and GEQU directives may not redefine a lable previously defined.

Fully resolved expression required for EQU by Pass 2!

An EQU directive may contain forward references, but they must be resolved by the
end of the file.

Too many global equates.

The assembler only allows up to 1000 global equates.

Page length must be at least 10 lines!

Attempting to change the page length using the PL directive will not allow lines
less than ten lines.

Page width must be >= 40 and <= 132!

The PW directive may change the width of the output page to between 40 and 132
characters only.

Too many lines on top!

The TOP directive may not specify more lines than are on the output page.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 86

Missing termination character 'X'!

The FCC directive uses the first character of it's argument as the terminator and
looks for that character to terminate the argument.

Illegal outside of macro definition!

The ENDM and MACEND directives are only valid within the definition of a macro.

Illegal outside of rept definition!

The ENDREPT directive is only valid within the definition of a REPT.

Only valid delimiters are: {, (, and [.

The MACDELIM directive allows specifying the character used to delimit a macro
argument, but is limited to the characters '{', '(' and '['.

MACEXIT illegal outside of macro definition!

The MACEXIT directive is only valid within the definition of a macro.

Conditional ELSEIF directive out of place.

The ELSEIF directive is only valid after a conditional directive.

Need conditional end directive here.

An end of condidional directive must be seen before the end-of-file is reached.

Conditional ELSE directive out of place.

The ELSE directive is only valid after a conditional directive.

Conditional end directive out of place.

An end of condition directive is only valid after a conditional directive.

Couldn't find section during pass2!

This error occurs if a section directive is parsed on pass 2 that wasn't parsed on
pass 1.

Label is required for SECTION directive.

A label must be on the same line as a SECTION directive to name the section.

Illegal value for RADIX directive!

The RADIX directive only allows the values 1, 2, 8, b, d, h, o, q. Anything else is
illegal.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 87

Need CHIP type here!

The CHIP directive must be followed by a symbol or number.

Invalid CHIP type!

The CHIP directive must be followed by one of "6502", "65c02", "w65c02s", "65816",
or "65802". Anything else is invalid.

End marker for comment missing!

The COMMENT directive takes a character to be used as an end marker as its
argument. This error is generated if the character is missing.

End of file before end of comment!

This error is generated if the end-of-file is reached before the end of comment
marker from a COMMENT directive is detected.

Need character argument for directive!

The LLCHAR directive is used to change the special character used to denote
temporary labels. This error message is generated if the LLCHAR directive is give
without an argument.

Need quoted file name!

The FILE directive takes a file path surrounded by double quotes followed by a
comma and a line number. If the quotes are missing, it is an error.

Need line number after file name arg.

The FILE directive takes a file path surrounded by double quotes followed by a
comma and a line number. If the comma and/or line number are missing, it is an
error.

Need local offset in ENDFUNC directive.

The ENDFUNC directive takes three arguments separated by commas. If the second
argument, the local offset, is missing, it is an error.

Need arg offset in ENDFUNC directive.

The ENDFUNC directive takes three arguments separated by commas. If the third
argument, the argument offset, is missing, it is an error.

Symbol required.

The SYM, STAG and MEMBER directives require a symbol as the first argument to the
directive.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 88

Symbol value required in SYM/MEMBER directive!

Following the symbol name, in the SYM and MEMBER directives is the value of the
symbol.

Unimplemented assembler directive.

If an opcode is not a valid opcode and not a directive, it is considered to be an
unimplemented directive.

Missing argument.

A directive that takes an ON or OFF argument is missing the argument.

Bad argument.

A directive that takes an ON or OFF argument has something other than ON or OFF as
the argument.

Divide by zero!

While evaluating an expression, a divide or modulo by zero was detected.

Invalid operator in floating point evaluate - N.

While evaluating a floating point expression, an invalid operator such as shift was
detected.

Bank number out of range!

An address expression contains a bank number larger than 255.

Hex and symbol are identical!

A hex number matches a symbol name. Use a leading zero to avoid this error.

String not terminated!

While parsing the input, a string was detected that was not terminated by the
corresponding termination character.

Missing terminating '.' on operator!

Operators that require a leading and trailing period such as .UGT., require both
the leading and the trailing period.

Macro name already defined!

A macro name may only be defined once. Attempting to define it twice is an error.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 89

Macro name conflicts with opcode, directive or section!

A macro name may not be the same as an opcode, directive or section unless the
MACFIRST directive has been turned on.

Arguments must be valid names.

When a macro is defined, the arguments must be valid symbol names.

Different number of arguments in macro call(N) and definition(N).

When a macro is invoked, the number of arguments in the call should match the
number of arguments in the definition.

Too many global equates.

The assembler only allows up to 1000 global equates.

Illegal index register!

Only 's', 'x', and 'y' are valid as index registers.

Missing character!

When an argument starts with a '(' or '[', there should be a matching ')' or ']'.

Only index register indirect allowed!

Only the Y index register is allowed following a stack addressing mode.

Only Y index register allowed!

Only the Y index register is allowed following a close parenthesis.

Illegal addressing mode!

The addressing mode specified is not a legal addressing mode.

Can't use register as label!

A register name may not be used as a label.

Need symbol after '.'!
Need trailing '.'!
Only #.low. or #.high. allowed!

When using immediate addressing, a .low. or .high. may be used to select the byte
to be used. When a period follows the '#' character, it is assumed that a symbol
will follow followed by another period and that the symbol will be one of "low" or
"high".

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 90

Instruction not allowed with selected processor.
Addressing mode not allowed with selected processor.

Different processors support different sets of instructions and addressing modes.
The processor is selected with the CHIP directive. If an instruction not
implemented on the selected processor is used, this error is generated.

Immediate value truncated!

When an immediate value is used in such a way that the value is changed when the
value is truncated, this error message is given.

Need label to branch to!

Branch instructions require a label to branch to.

Branch out of range!

Branches are limited to plus or minus 127 bytes. If a branch is attempted to a
label beyond this range, an error is generated.

Dot not allowed on opcode names.

A leading period is allowed on directive names, but is not allowed on instruction
opcodes.

Multiply defined symbol.

An attempt has been made to define a symbol that has already been defined.

Illegal character in directive.

A leading period must be followed by a directive otherwise it is an error.

Need opcode, directive or macro name here.

A statement must consist of either an opcode, directive or macro name.

Unknown opcode, directive, macro or section.

A statement has a symbol that is not defined.

Extra characters on line!

After the last argument, the remainder of the line should be empty except for
comments unless the SPACES directive has been used.

Section name already defined!

An attempt has been made to define a section already defined.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 91

Section name conflicts with opcode, directive or macro!

A section name must be unique and not conflict with any opcode, directive or macro.

Undefined symbol - <SYM>.

A symbol has been referenced but not defined.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 92

Appendix B Linker Error Messages

Error creating symbol file!

An error occurred while trying to create the symbol file.

Too many source files in module!

The linker allows up to 5000 different source file names. More than that is an
error.

Unable to find tag serial number!

This is an internal error that occurs when dealing with structure tags.

Couldn't create error file `FILE'!

An error occurred while trying to create the error file.

Error creating symbol listing file!

An error occurred while trying to create the map file.

Linkio:Out of memory!

The linker output cache mechanism was unable to allocate enough memory.

Cannot create output file: ZLN.TMP!

The linker creates a temporary file when building the output. This error occurs if
the linker is unable to create that file.

Error while lseeking output file!

An error occurred when seeking in the temporary output file.

Error writing output file!

An error occurred when the cache is written to the output file.

Error while reading output file!

An error occurred when a cache block was read back from the output file.

Attempted to write outside of file bounds!

The linker pre-computes where everything in the output should end up, and if
something ends up outside the computed bounds of the output file it is an internal
error and should be reported.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 93

No input given!

When the arguments to the linker are parsed, if no input files have been specified,
that is considered an error.

Option syntax error!

When an argument is passed to the linker, if there are extra characters that are
part of the option, it is an error.

Cannot have nested -f options.

The -f argument allows options to be read from a text file. However, the option
files may not be nested.

Cannot open -f file: FILE!

The linker was unable to open the options file, FILE.

Illegal Nintendo map!

The Nintendo map option may be specified as -n, -n2, or -n8. Anything else is an
error.

Out of memory!

The linker is unable to allocate enough memory.

Couldn't open FILE in pass 2!

The linker was unable to open a module file in pass 2 that was opened during pass
1.

Unknown loader item (0xXX)!

An object module is corrupt and the linker has detected an unknown token.

Section 'SECT' has different type in module 'FILE:MODULE'!

The same section can be defined in different files. However, all definitions of the
same section should be defined with the same parameters, otherwise it is an error.

Overlap of NN bytes in section 'SECT' of 'FILE:MODULE'!

The linker checks that sections located at fixed addresses don't overlap one
another.

Section SECT's ROM image exceeds bank $XX by $XX!

A single section may not exceed 64K unless the section spread option, -Z, has been
specified.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 94

Attempt to locate section `SECT' more than once!

A section may be located at only a single fixed address.

Module 'FILE:MODULE' too big to fit!

As each module's data is added to a section, if there is not enough room left in
the bank, this error is generated.

Section 'SECT' overlaps section 'SECT' by NN bytes at address 0xXX (ROM)
Section 'SECT' overlaps section 'SECT' by NN bytes at address 0xXX (Relocatable)

Each section's ROM and relocatable address and size is checked to see if it
overlaps another section and this message is generated if it does.

Can't mix 65xxx and 65032 object module types!

The object module format for 6502 and 65816 is different from the 65032.

Library format is invalid!

If a file is passed to the linker as a library and is not in the correct format, an
error is generated.

Can't open FILE!

The specified file, FILE, didn't exist or was locked and couldn't be opened.

Couldn't read object file FILE!

An error occurred when reading the specified file, FILE.

Not an object file FILE!

The object file is not in the correct format.

Undefined symbol: SYM

A symbol is referenced that has not been defined.

Branch out of range!

The linker can handle files assembled in a single pass and can resolve branch
relative instructions and generates an error if the branch is out of range.

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 95

THIS PAGE LEFT INTENTIONALLY BLANK

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 96

INDEX

ABSOLUTE, 50
ABSOLUTE INDEXED WITH X, 51
ABSOLUTE INDEXED WITH Y, 51
ABSOLUTE INDIRECT, 52
ABSOLUTE LONG, 50
ABSOLUTE LONG INDEXED WITH X, 51
ACCUMULATOR, 50
ADD, 25
ADDRESSING MODE SYMBOLS, 22
APPEND, 30, 55
APWDC, 70
ARGCHK, 71
ASCII, 67
ASCLIST, 80
BIT7, 65
BLKB, 69
BLKL, 69
BLKW, 69
BYTE, 68
CASE, 61
CHIP, 61
CHIP 65816, 20
CHIP 65C02, 20
CHIP W65C02, 50
CHKIMMED, 62
CODE, 14, 15, 20, 34, 35, 37, 39, 57
COMMENT, 62
COND, 74
CONDLIST, 80
DA, 67
DATA, 13, 14, 15, 16, 17, 20, 34, 36, 39, 40, 57, 58, 79
DATE, 67
DB, 68
DBREG, 23, 63
DBYTE, 68
DC, 68
DEFB, 68
DEFL, 58
DEFS, 70
DEFW, 68
DIRECT, 50
DIRECT INDEXED INDIRECT, 51
DIRECT INDEXED WITH X, 51
DIRECT INDEXED WITH Y, 51
DIRECT INDIRECT, 52
DIRECT INDIRECT INDEXED, 50
DIRECT INDIRECT LONG INDEXED, 51
DL, 69
DOUBLE, 70
DPAGE, 23, 63

DS, 70
DSA, 70
DSB, 70
DSL, 70
DSW, 70
DW, 68
EFUNC, 61
EJECT, 79
ELSE, 74
END, 56
ENDC, 27, 74
ENDIF, 27, 74
ENDM, 25, 71
ENDMOD, 56
ENDR, 73
ENDS, 13, 57
EQU, 58
EQUAL, 58
EXIT, 56
EXTERN, 59
EXTERNAL, 59
EXTERNS, 59
FCB, 68
FCC, 67
FDB, 68
FLOAT, 70
GEQU, 58
GLOBAL, 19, 60
GLOBALS, 60
HEADING, 78
IF, 74
IFABS, 75
IFDEF, 75
IFDIFF, 75
IFEXT, 76
IFFALSE, 74
IFLONGA, 77
IFLONGI, 77
IFMA, 73
IFMATCH, 77
IFNABS, 75
IFNDEF, 75
IFNDIFF, 75
IFNEXT, 76
IFNFALSE, 74
IFNMA, 73
IFNPAGE0, 76
IFNREL, 75
IFNSAME, 75
IFNTRUE, 74

The Western Design Center, Inc.
September 2005 Assembler/Linker v3.49

 The Western Design Center, Inc. 2005 97

IFNZ, 74
IFPAGE0, 76
IFREL, 75
IFSAME, 75
IFSHORTA, 77
IFSHORTI, 77
IFTRUE, 74
IFZ, 74
IMMEDIATE, 50
IMPLIED, 50
INCDEBUG, 30, 61
INCLIST, 80
INCLUDE, 11, 30, 55
KDATA, 14, 15, 20, 34, 36, 37
LIST, 79
LLCHAR, 19, 65
LONG, 69
LONGA, 63
LONGI, 64
LONGW, 69
LWORD, 69
MACDELIM, 72
MACEND, 25, 71
MACEXIT, 72
MACFIRST, 72
MACLIST, 81
MACRO, 71
MASK, 65
MESSAGE, 60
MESSG, 60
MicroTek, 39
MLIST, 81
MNLIST, 81
MODULE, 13, 56
NAM, 78

NLIST, 79
NOLIST, 79
ORG, 15, 18, 58
ORIGIN, 58
PAG, 79
PAGE, 79
PAGE0, 14, 20, 57, 76
PASS1, 81
PL, 77
PROGRAM COUNTER RELATIVE, 51
PROGRAM COUNTER RELATIVE LONG, 52
PUBLIC, 19, 60
PW, 78
RADIX, 64
REF_ONLY, 57
REPT, 73
RMB, 70
SECTION, 57
SET, 59
SPACES, 64
SQUOTE, 66
STRING, 68
STTL, 78
SUBTITLE, 78
SUBTTL, 79
TITLE, 78
TOP, 78
TTL, 78
TWOCHAR, 23, 66
UDATA, 14, 15, 17, 20, 34, 39, 57
VAR, 59
WORD, 68
XDEF, 19, 60
XREF, 59

	SOFTWARE DEVELOPMENT SYSTEM
	CHAPTER 1 Introduction
	Assembler
	Linker
	Librarian
	Manual organization

	CHAPTER 2 Files
	Source files
	Macro files
	Object modules and libraries
	Output files

	CHAPTER 3 Program Structure
	Modules
	Sections
	Pre-defined sections
	Absolute versus Relative
	Section location
	Copying data
	Startup.ASM
	Nintendo development

	CHAPTER 4 Statement Syntax
	Comments
	Labels
	Operation
	Processor Instructions
	Assembler Directives
	Section Directives
	Macro Calls

	Operands
	Operators
	Unary Operators
	Binary Operators
	Comparison Operators
	Operator Precedence Table
	Numbers
	Addresses
	Immediate Operands
	Character Constants and Strings
	Program Counter
	Assembler Addressing Modes

	CHAPTER 5 Macros and Conditionals
	Macros
	Macro Definition
	Calling a Macro
	Redefining Assembler Directives and Opcodes
	Macro Labels

	Conditional assembly

	CHAPTER 6 WDCxxAS (ASSEMBLER)
	Running the Program
	Option Summary
	Option Descriptions

	CHAPTER 7 WDCLN (LINKER)
	Running the Program
	Option Summary
	Option Descriptions
	Quick Linking
	Technical Notes
	Considerations for when CODE section exceeds bank 00
	Notes on the starting address for each section in the linker output
	Notes on creating a new DATA section

	CHAPTER 8 WDCLIB (LIBRARIAN)
	Running the Program
	Option Summary
	Option Descriptions

	CHAPTER 9 WDCOBJ (EXAMINE OBJECT MODULES)
	Running the Program
	Option Summary
	Option Descriptions

	CHAPTER 10 WDCSYM (EXAMINE SYMBOL TABLES)
	Running the Program
	Option Summary
	Option Descriptions

	CHAPTER 11 Assembly Opcodes
	Standard Instructions
	Alternate Instructions
	W65C02S Instructions
	Addressing Modes

	CHAPTER 12 Assembly Directives
	File and Symbol Control
	Parsing Control
	Data Definition Control
	Macro Control
	Conditional Control
	Listing Control

	Appendix A Assembler Error Messages
	Fatal Errors
	Premature end of file in conditional.
	Modules must start and end in original file!
	Unable to start new module without ENDMOD.
	Need module name here.
	More than one input file specified!
	More than one output name.
	Out of memory!
	No input file specified!
	Can't open input file <FILE>.
	Can't open output file <FILE>.
	Can't open listing file <FILE>.
	Too many -I options.
	Includes nested too deep.
	Unable to reopen 'FILE' after INCLUDE!
	Input line longer than 512 characters!
	Missing MACEND or ENDM in macro definition.
	Macro nested more than 256 deep!
	Macro arguments too long!
	Reference to undefined macro argument!
	Expanded macro line longer than 512 characters!
	REPT line longer than 512 characters!
	Missing ENDREPT in REPT definition.
	Error writing to object file.
	Label value different between pass 1 and 2!
	Error writing to listing file.
	Exceeded maximum of 256 sections!
	Max of 500 nested sections exceeded!
	Imbalance in nested sections.

	Non-Fatal Errors
	Need symbol name here!
	Missing comma and second argument.
	Conditional requires symbol name.
	Unknown symbol in conditional.
	This conditional only valid inside a macro.
	Need start,size for INSERT!
	Couldn't open binary file 'FILE'!
	Symbol required.
	Label is required for directive.
	Label type redefined.
	Can't redefine type of label.
	Fully resolved expression required for EQU by Pass 2!
	Too many global equates.
	Page length must be at least 10 lines!
	Page width must be >= 40 and <= 132!
	Too many lines on top!
	Missing termination character 'X'!
	Illegal outside of macro definition!
	Illegal outside of rept definition!
	Only valid delimiters are: {, (, and [.
	MACEXIT illegal outside of macro definition!
	Conditional ELSEIF directive out of place.
	Need conditional end directive here.
	Conditional ELSE directive out of place.
	Conditional end directive out of place.
	Couldn't find section during pass2!
	Label is required for SECTION directive.
	Illegal value for RADIX directive!
	Need CHIP type here!
	Invalid CHIP type!
	End marker for comment missing!
	End of file before end of comment!
	Need character argument for directive!
	Need quoted file name!
	Need line number after file name arg.
	Need local offset in ENDFUNC directive.
	Need arg offset in ENDFUNC directive.
	Symbol required.
	Symbol value required in SYM/MEMBER directive!
	Unimplemented assembler directive.
	Missing argument.
	Bad argument.
	Divide by zero!
	Invalid operator in floating point evaluate - N.
	Bank number out of range!
	Hex and symbol are identical!
	String not terminated!
	Missing terminating '.' on operator!
	Macro name already defined!
	Macro name conflicts with opcode, directive or section!
	Arguments must be valid names.
	Different number of arguments in macro call(N) and definition(N).
	Too many global equates.
	Illegal index register!
	Missing character!
	Only index register indirect allowed!
	Only Y index register allowed!
	Illegal addressing mode!
	Can't use register as label!
	Need symbol after '.'!
	Need trailing '.'!
	Only #.low. or #.high. allowed!
	Instruction not allowed with selected processor.
	Addressing mode not allowed with selected processor.
	Immediate value truncated!
	Need label to branch to!
	Branch out of range!
	Dot not allowed on opcode names.
	Multiply defined symbol.
	Illegal character in directive.
	Need opcode, directive or macro name here.
	Unknown opcode, directive, macro or section.
	Extra characters on line!
	Section name already defined!
	Section name conflicts with opcode, directive or macro!
	Undefined symbol - <SYM>.

	Appendix B Linker Error Messages
	
	Error creating symbol file!
	Too many source files in module!
	Unable to find tag serial number!
	Couldn't create error file `FILE'!
	Error creating symbol listing file!
	Linkio:Out of memory!
	Cannot create output file: ZLN.TMP!
	Error while lseeking output file!
	Error writing output file!
	Error while reading output file!
	Attempted to write outside of file bounds!
	No input given!
	Option syntax error!
	Cannot have nested -f options.
	Cannot open -f file: FILE!
	Illegal Nintendo map!
	Out of memory!
	Couldn't open FILE in pass 2!
	Unknown loader item (0xXX)!
	Section 'SECT' has different type in module 'FILE:MODULE'!
	Overlap of NN bytes in section 'SECT' of 'FILE:MODULE'!
	Section SECT's ROM image exceeds bank $XX by $XX!
	Attempt to locate section `SECT' more than once!
	Module 'FILE:MODULE' too big to fit!
	Section 'SECT' overlaps section 'SECT' by NN bytes at address 0xXX (ROM)
	Section 'SECT' overlaps section 'SECT' by NN bytes at address 0xXX (Relocatable)
	Can't mix 65xxx and 65032 object module types!
	Library format is invalid!
	Can't open FILE!
	Couldn't read object file FILE!
	Not an object file FILE!
	Undefined symbol: SYM
	Branch out of range!

	INDEX

