WDC
TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

SOFTWARE DEVELOPMENT SYSTEM

ASSEMBLER/LINKER/LIBRARIAN

© The Western Design Center, Inc. 2005 1



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

THISPAGE LEFT INTENTIONALLY BLANK

© The Western Design Center, Inc. 2005 2



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
Table of Contents

(8 o VAN = I =t =t R N o {070 ¥ ox { o [P 9
F XSS = 10] o] = TS OSO SRS 9
(T3] C= SRRSO 9
[T o T= T =T o P 9
VI LU =10 0 == o] o PSP 10

(8 o AN o I = A T = 11
SOUI CE ISttt ettt e e e s b e st e ebe e besaeesaeeeheeebeenbeeabeeabeshaesheesbeeabeensesasesaeeebeabeenbeeabeeasesheesbeesbeebeennesnnesans 11
[ 1= T o B 111U 11
(@ o T= o 41070 [0S Lo T o == RSP 11
L 1H 1 o111 1= RSP 11

CHAPTER 3 Program SIEUCLUI ©.....coieiieiiee ettt sse e s s sne s ssse e ssse e nnseesnsseesseeesnnns 13
Y 0o [0 1= TSROSO 13
SECEIONS ...ttt ittt et et e e e bt e e be e beeabesaeeshaesheesbeeabeeasesaseeaeeebeeabeenbe e At e eabeeheeaheeeheebeenbeaaseeheeeReebeenbeeabeeateeheesheenbeeareenreanrenaes 13
Pra-0EfINEA SECLIONS.......ciiitieciee ettt ettt e e s e s be e s te e tesasesaeeebeeebeeabeeabesabesbeesbeesbeebeensesasesaeeabeenbeenbeesbessnesreessens 14
ADSOIULE VEI SUS REIGLIVE ...ttt ettt et ebe e be e b e et e e st e sbeesbeesbeesbeebeaaeesaeesaeeebeebeenbesabesasesasesbeesreas 14
ST= o (0] g 1 Fo o1 £ o o [T 15
L0070 Y71 o o -1 RSP 15
SEANTUP A SIM ettt ettt h e s bt e et e et e et sae e ehe e bt ea b e e R beea£e SR ee AR e e ARe oAb e e et eaeeeReeeReeRe e EeenEeenteeReeeheenReenreeeesneeeaes 16
NI 1C= g e (o Xo [ V7= o] ] 1= o SRR 18

CHAPTER 4 SEAtEMENT SYNTAX ...c.ueiiteeiiiieitieieeee ettt n e ss e n e sneenenneenne s 19
L0 1 0T ] 1 19
(1= 0T E= 19
(@01 =1 o F TSSOSO PP 19

(e loros o g S A W (oo O ORRP 20
ASSEMIDIEN DIFECHIVES ....vei ittt ettt ettt e st e et e e s be e e ebee e sbaeeebeeesbeeaabesesbseeses e abaeebeeesbseeseeesbaeeaseeesbseeseeessneenseensns 20
SECLION DT ECLIVES. ... cueeeciee ettt ettt e ettt e s e e e te e e s teeeebeeeebeeeabesaabeeabeseabeeanbeseabesanbeseabeesnbesanbeesnbessbessnsesenbaesnbesansennnrenan 20
=Yoo T O | £ USRS 20
L@ 0= = 1 o SR 20
L 0T = o TS 20
L0 LT YA O a1 = Ko | S 21
BINAIY OB AL S.... ittt ettt sttt sttt b et b e b st bt s b e seeb e b e s e e b e e b e s e b e e b e e e e b e e R e e e e b e e R e e e e R e e R e nE e Rt b e e bt ebene bt e Reneerenre e ere s 21
COMPAT ISON OPES AL S.....evieeeirterteueetestesestessesessesee e st sseseesesseseesess e e esesbeaeesesb e s esesh e s eae e b e s eseeb e b e neeb et e st e b e b enesb et enesbenbeneees 21
Operator PreCedenCe TaADIE ....... oottt bttt e et bt bt e heehe e e e beseeebesbesaesbe e e aneeseans 21
LU T0] o= =SOSR OURRPTRN 22
F o [0 [ Q=SS TSROSO 22
gL a1 o T =T @ o1 =T o RS 23
Character CONStANTS QNG SEFINGS ..eouveverereie e eeeesee s se e s e e seerteseestesre s e esee s e eessestessesseeseessensessestessesaensenneensnssens 23
00 =1 0 0 011 | = USSP 23
ASSEMDBIEr AAAreSSING MOUES. .....ccueceieieie ittt et sae s e et este st e besbeseeeseeneeneesaeteseesresseeneeneenenntes 24

CHAPTER 5Macrosand CoNAItiONAIS.........ccueeiueiiiiiieceiie et cteeeetee et sbee e s sabee s snbe e snreesnes 25

1= T SR 25
=Yool B L T a1 A o o TP RSO R 25
(O 1T aTo 1= Y01, I To: o TP 25
Redefining Assembler DirectiveS and OPCOUES........c.ciirieiiirieiriereeesie ettt ettt b et se b sbeseebe b neeneas 26
1= ot o T = o< PRSP 26

LOTe]gTo 1A ToTat= 1= = o] o] | SRS 27

CHAPTER 6 WDCXXAS (ASSEMBLER) .....ociiiiiieiesieeie ettt sseesse e sneennens 29
LT T 0 R T 0o = Ty o R 29
OPLION SUMIMAIY .ttt sttt sttt b et b e b st bt bese e bt s b e se e bt s b e e eb e S b e e eb e e E e e e bt S Ee e eb e e b e e eb e s b et eb e s beneeb e e b et nbenbe e nbenbenees 29
OPLION DESCI IPLIONS ...ttt sttt sttt sttt b et be b et b e b e e e bt s b e e eb e e R e e e bt s Ee e eb e s b e e eb e e b et e bt e b et eb e s b et ebenbe e et et enees 29

© The Western Design Center, Inc. 2005 3



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
CHAPTER 7 WDCLN (LINKER) .o eeeieee ettt ettt s e s eaesnaesseensesneenseensens 33
LT T L0 R T 0o = Ty o S 33
L0010 TS 1 1] 1= Y SRS 34
(@140 T D= ot T 1 0] SRS 35
QUICK LINKINQ .ttt sttt bbb et b e s b et b e b et b e s E e e bt e E e e e b S E e e eb e e b e e e bt e b e Rt e bt e b et eb e b et eb e s b et nbe b enees 40
LI 11T = 0\ - 41
Considerationsfor when CODE section exceedShank 00.........cccuoviiiiiiiiinieesee e neen 41
Noteson the starting address for each section in the linker OUTPUL.........coooiiiiiie e 41
NoOtes 0N Creating 8 NEW DAT A SECHION ....co.eiiiieeie ettt eh et eese et e besbesbe e st sae e e anbeseeebesbesaeebesneeneeneaneas 42
CHAPTER 8WDCLIB (LIBRARIAN) ..ottt ettt te s e s seesnaestaenneasnneennee s 43
RUNNING T PIOGI @M ...t bbb bbb bt b e b e bt s b e b e st e b e b e ae e b e b e st e b et e st sb e b e st sb et eneees 43
OPLION SUMIMAIY .ttt sttt sttt b et b e b e be b e st e bt b e e e bt s b e e eb e s b e e eb e e b e e e bt S Ee e eh e e b e e eb e e b e st eb e s b eneeb e e b et nbesbe e nbenbenees 43
(O o (o g B I= et AT o1 (o] £ UURTURRSP 43
CHAPTER 9WDCOBJ (EXAMINE OBJECT MODULES) ......oooiiiierieereeiesiesieeee e 45
LT T 0 R T 0o = Ty SR 45
OPLION SUMIMATY .ttt sttt b et b e bt be b e st e bt sb e e e bt s b e e eb e s b e e eb e S E e e ebe S E e e eb e e b e e ebenE et e bt s b e neeb e b et ebesbe e nbenbenees 45
OPLION DESCI IPLIONS ...ttt ettt sttt b et b e bt b e b e e bt s b e e eb e e E e e e bt s Ee e eb e e b et e bt e b et e bt e b e neeb e b et nbenbe e nbenbeneee 45
CHAPTER 10 WDCSYM (EXAMINE SYMBOL TABLES) ..ccooiiieseee e 47
L] T 0 TR T 0o = Ty o S 47
L0010 TS 1 1] 11T Y SR 47
L@ 0140 T D<ot T 1 0] SRS 47
CHAPTER 11 ASSEMBIY OPCOUES.......ccuiiieieieiieeiecieste ettt esae e se e s eneesreenseeneesneensens 49
S = T o Fo T I W a TS T [ox 4o F OSSO 49
ALEI NAEE I NS UCLIONS.....ecviiviiee ettt ettt et ete e st esbe e sbeeebeesesaeesaesebeaabeeabeeabesssesbaesheesbeesbeenseeneeaaessaeeabeenbeenbeenbesnsesaeesreesbeas 49
LT O 02 g L= A 0 Tox o LTRSS 50
o (o [ == T T LYoo =S 50
CHAPTER 12 ASSEMDBIY DIFECHIVES ...ttt sttt ettt sneene e nne s 55
File and SYMBDOI CONTIO ...t et b e e bt s b e et et e se e be s bt s bt sheeaeemee st ebesbesbeebeeneenseeantas 55
L= TS T o [ O 0 o SR 61
D= =N D= 1 oL o g I @o o] | SO SS 65
Y= ot o @ 11 o OSSO 71
(@0l aTe [ o gT= (@] 14 fe] OSSR 74
IS T o T 0] 1 | 77
AppendiXx A ASSEMDIEr Error MESSAQES......cc.ciueiierieeieseesieseeseesteeseesseessesaesseesseessesseessesssesseessessenns 82
=L T T oSS 82
Premature end of filein CONAITIONEAL. .........cuiiiieiiircce et ebe st e besbe e sesteseeneas 82
Modulesmust start and end in Original filE.........cov i neenes 82
Unableto start new module Without ENDMOD. .......ccociiiiiiiirienisieese st ssenesnas 82
NS Ss W oTo (U1 =T gT= g Lo T oS 82
Morethan oneinPuUL file SPECITIEU! ...t b e e bbbt b e be b neeneas 82

M OF € than ONE OULPUL NMAIMIE. ........eiieiitiiteiee ettt sttt et e b e et e besbesbe et e aeere e beseesbeebeeaeeae e e anbeseeabesbesaesbesneenseneantas 82

L@ 10 1001 01 14T USRI 82

NN T Tl o 10 11 LS 1= w1 =" LS 82

(O T Ao o1 a I T o] o101 1 L= I TSRS 82
(O T Ao o 1= a0 TU L4 01U 1 {1 =T I PSS 82

(O T Ao o 1= o I TS T o N LTSI PR 83

T OO MANY =1 OPTIONS. ...ttt sttt b et b e b e bt e b e e bt s b e e eb e s b e e e bt s b e e eb e s b e e eb e s b et e b e s be e nbesb et ebe st e e ees 83
INCIUAES NESLEA 100 TEED. ... ettt sttt e b bbb e b e b s e e bt e b e se e bt s b e se e bt e b e st ebe e b e seebeebeseebesbeseeseebeneeneas 83
Unabletoreopen 'FILE' after INCLUDE! ...ttt st ne st nsenanns 83
Input linelonger than 512 Char GCLEN Sl ..o et bbbt ae e b e seesbesbesbesbe s e eneeseaneas 83
Missing MACEND or ENDM in MacrO defiNitioN. ...ttt st sne s 83
Macro nested MOorethan 256 AEED! ..........cciiieieieie et e st s ee st e s ae s aeeae e e e teseesbesbesreeteeneeneeneants 83
(/= Tot g Je= o (8T aT= 01 63 (oo J o g | S 83

© The Western Design Center, Inc. 2005 4



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
Referenceto undefined Macr O ar QUMENT! ..ot eb e s b e s sbeseene s 83
Expanded macro linelonger than 512 Char @CLEr Sl ..ot et 83
REPT linelonger than 512 Char GCLEN Sl..... ..ottt sttt sa et ae e e e e e se e s b e b sbeebe s e eneeseannas 83
Missing ENDREPT in REPT defiNMITiON. .....ccccciiiie ittt e e sttt ena et sne st s nesreenesnnenaeneaneas 83
ST o Ty N ] aTo I Lol o] o= i 1 =S 84
Label value different between Pass 1 and 2 ... s e e neenns 84
ST o TV N T gV T Lo N = T T I 1 =S 84
Exceeded maximum Of 256 SECLIONS! ........cciiieiiiiieii sttt st st e se s e e e e teseesbesbesaeeseeneeneenseneas 84
Max of 500 nested SECtIONS EXCERAEBML ..........oo et s e e e teseesbesbesreese e e eneeneeneas 84
IMDAIANCE 1N NESLEA SECLIONS. ...ttt ettt h et re et e bt s b e e b e aeeae e e e nbeseeebesbesbeebesneeneeneantas 84

N[ = 1= L g o] SRR 84
= =To IS Y aa] o Yo I g F= T g T U= = S 84
Missing comma and SECONA A GUIMENT. .......ecieierieieiestese et eeeeestesee s e s e sresse s e eseeseeteseestessesseeseensesseseessessessessessseneessenses 84
Conditional requireS SYMDOl NAME.......ccoci st e e e e stesresresaeese e e eneeseestessesaeesenneenseneens 84
(0] a1 < oV 0 IEY7 0 0] oo I T o Vo 11 o) - 84
Thisconditional only valid INSIAE @ MEACT 0. .....cceiiiriiirieiee et ettt sttt b b 84
NEEA SLArt,SIZE FOr INSERT ! ..ottt et e et e et e et e s s beeebessebeesbessbeseabeeesbeesbesesbesesesesbsesaseessseesasenesns 85
Couldn't Open DINAIY fIlE FILE ... .. ettt ettt et b e be e aeeae e e e beseeebesbesaesbe e e anteneans 85
Yl oo I = o [0 1T = USRS 85
[ o IR = o (UL =0 I Lo o [T = vt f Y/ S 85
I T T= I Y7 0 1= =0 L=t U= SRS 85
Can't redefiNEtYPE Of [ADEL. ........oceeeecee e e et re e et e e re s renaeene e e eneenrens 85
Fully resolved expression required for EQU DY PasS 2! .........ccoceiiiiiiiesieecerecse st 85
T OO MANY GIODAI EOUBLES. ..ottt sttt st st b et e b e bt be b et bt b e e e bt s b e s e e b e s b e e e b e s b et e b e st et e b e s b et ebenbe e e 85
Page length must beat 1€aSt 1O TINES! ...ttt b e st eb e b e b e b e be b neene s 85
Page width MUSt DE >= 40 @NA <= 132] ...ttt b e bt bt e a e e e e beseeebe b sbeebe st e e e neaneas 85
ool aa b0} VA L Y=Y o a1 (o] o E SRS 85
VRIS Talo A= g aalTaT= d Ko gl e T T To: = S S 86
[Hlegal outside of MACr O AEfiNITION! .........ciiiiicece e s r e st aeeae e e e e s e e besbesreereeaeeneeneentas 86
[Hlegal outside of rept dEfiMITION! ........ccoiiiieec e e e e e ee s e e tesaesreere e e eneeneanees 86
(@AY= 1o le (= T a 1] = gST= U= (A (R o N PSR 86
MACEXIT illegal outside of MacrO defiNitioN! ..o 86
Conditional ELSEIF dir CtiVe OUL Of PIACE. .......couiiiirieieireeeree ettt 86
Need conditional @Nd i ECLIVE NEI €. ..ot ettt et e e b e b sbesbe e e e e e seaneas 86
Conditional EL SE dir@Ctive OUt Of PIACE..........oiiieieee et se et s sae et e 86
Conditional end dir €CtiVE OUL OF PIACE.........cuiiiiiecece e s st re e e teseesbe s resreereeaneneeseens 86
Couldn't fiNd SECLION AUFING PASS2! ......couicieieieieeieeiere sttt e e e e st e te s te s testesaees s e s e tesseabestesaeeseessentessestestessesseeneensessens 86
Label isrequired for SECTION il €CLIVE. ....ccviieiieiicie ettt sse e e e e seestesaesneese e e eneeneeneas 86
[Hlegal value for RADIX QiFECHIVE! .....cciiiceieece ettt sttt e e st e s aeenees e e e eneeseentesaesaeesenneeneenennes 86
NEEA CHIP LY PO NNl ...t b bbbt s b bt e e bt e b e s e e bt s b s e e bt e b e st e bt e b e seebeebeseebesbeseebesbeneenens 87
TNV CHIP EYPEL ..t b bbb e bt b e s e e bt e b s e b e s b e s e e bt e b e s e e bt e b e s e ebesbeseebesbeseebesbeneeneas 87
End marker for COMMENT MISSING! ... ....oiiiiiiiiertie ettt sttt h et re e be et s besbe e st sae e e e nbeseesbesbesaeenesneaneeneaneas 87
End of file before end Of COMMENT! ...ttt e e bbb sbe s e e e e seaneas 87
Need character argumMeENt fOr dir ECLIVEL..........cuiiie et e et s e e st e s besreere e e enaeseeneas 87
NNT= =0 o U0 = I =g =T = SR 87
Need [ine NUMbEr after fillE@ NAME A Q... .ciieeeeerc et s e e e e s e e s tesresreere e e eneeneeneas 87
Need [ocal offset iN ENDFUNC il ECHVE. ......ooveiiiieirie ettt sttt sttt st st s ebe st s b b e b st neenens 87
Need arg offset in ENDFUNC il CHIVE. .....coiiiiiiiieeiiitereeie sttt sttt sttt s ebe bbb e be b nneneas 87
SYMDOI FEOUITEO. ...t h bbb he b h e b e b e st s b e b e st e b et e ne e b e b e st s b et et e b e bt ees 87
Symbol valuerequired in SYM/MEMBER dir €CLIVE! .......cc.oiiiiie et 88
Unimplemented assembler AirECHIVE. .....oo.oii ittt b e bttt e e e et b b e sbesaeene e e e e s 88
TS T aTo 1= 1o 100 1= o S 88
[ To 1= T 10T T o | S 88
[TV [ o)V = o S 88

© The Western Design Center, Inc. 2005 5



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
Invalid operator in floating POINt @VAIUALE - N. ..ot seenea 88
Bank NUMDBDEr QUL OF FANGEL ...ttt e h et e e e et e b s bt s bt e aeeae e e e neeseeebesbesbeebeeaeeneeneantas 88
Hex and symbol @r @ IdENTICAIT ..ot et bbbt a e e e e b e se e s b e b sbeebe e e eneeseaneas 88
S T lo o0 0= 41T == TP 88
[V EESSTalo Ra= g aalTat=idhg e TR o g Te o 1= =1 (o] SR 88
Macronamealready dEfiNEA! ..........cco ittt ae e e e s e e e e e se e besresreere e e eneeneenres 88
Macro name conflicts with opcode, dir €CtiVe OF SECLION! ........cociiiiiieie e 89
ArgumentS MUSE DEVAlTA NMAMES. ......c.ooiiiiiiiee ettt b e bt b e bbbt b s b et bt be e b bt e b b 89
Different number of argumentsin macro call(N) and definition(N). .......cccoveririnine e 89
T OO MANY GIODAI QUALES. .......eveieeeeeeiie ettt h et e e et e bt shesb e e e e aeesE e beebeeheeheeaeeaeene e besbesbesbeaneenneneantas 89
o= T g o (o = o [ L o USSR 89
TS gTo e g = = o (= o SR 89
Only index register iINAIreCt AlOWEL! .........couiiiieece e e e st aeeae e e e teseesbesresaesreeneeneeneens 89
(O 01 A A g Te [ = o [1 = = oY= o | PR 89
1o =T IE= o Lo L= T o oo [ S 89
Can't USETEgiSter @STADEI! ...t bbb bbb et b et b n e 89
=S Y ag] oo = = S TSR PSR PTSTURPTOTPRPRRTON 89
N2 =0 I = T T Vo TR USSR 89
Only #.10W. OF #.Nig. @HOWE! ... et a et b e heeae e e e beseesbesbesaesbe e e aneeseens 89
Instruction not allowed With SEIECLEA PrOCESSON .......ciiiiieeceeeee e aesr e st e s resresre e e eneesraneas 90
Addressing mode not allowed With SEIECtEd PrOCESSON . ..ccuviii it e e snenas 90
IMMEdIAte VAIUE LIUNCALEA! ...ttt b bbb st bt b e s e bt st e seebesbeseebesbeseebenbeneenens 90
Need [aDE 10 DIFANCN TO! ...ttt b et s bt ese bt st e se bt s beseebesbeseebesbeneenens 90
Branch OUL OF FANGEL ...ttt b bbb e st bt b st bt s b e s e eb e s b e seebesbeseebesbeneenens 90
Dot NOt allOWEd ON OPCOUE NAMIES........ciuiieiiitereete sttt ettt ettt ettt et b st bt s b se bt s b e se e bt e b e se e bt sbeseebesbeseebesbeseebesbeneenens 90
MUItIPlY dEfINEA SYMIDIOL. ...t e et bbbt aeea e e e et e seesbesbesbeebe e e aneeseantas 90
[H1egal Char@CLEr 1N QIiFECLIVE. ....c.eiiieee ettt h et e et et bt sbe e aeeae e e e neeseeebesbesbeebesneenseneantas 90
Need opcode, dir €Ctive Or MACI O NAMENENE......c.coiuiii et st eae e e e e seesbesbesreere e e eneeneeneas 90
Unknown opcode, dir €CtIVE, MACT 0 OF SECLION. ......ciiiieiiieceeeeie e se et e e se et e s e sre et e e e e e e se e tesresresresaeeneeneensenes 90
EXEra CRAraCter S ON TINE! ..ottt s b bbb s bt s b e se bt s b e seebe st e seebesbeseebesbeseenenbeneeneas 90
Section NAaMe alr €aAY UEFINEA! ........cecieiire e e e e st e st e s resaeeae e e eneeseesteseesaeesenneeneenenns 90
Section name conflicts with opcode, dir €CtIVE OF MACT O! ......c.eeieiiriere e s neens 91
(8] aTe (= 1T 0= o Y7 1 0] 0o IR 2, SRR 91

AppendiX B LiNKEr Error MESSAGES ......ccuiiiiiierierieriestesie ettt e et be e e e 92
ST o e == T TR/ 0 0] o) I 1= ST 92
Too many SoUrCeTIlESTN MOUUIE! ..o e ettt b et b e 92
Unableto find tag Serial NUMDES .. ... bbbttt nn s 92
Couldn't Creat@ ErTOr fIlE TFILE ..ot ettt e st e b et e s te e beste e sbesteneans 92
Error creating Symbol lIStING FIIEL ...ttt e b e bbb e e e aneas 92
[ oo @ 10 1)l 1 0= 1T 2 S 92
Cannot create OULPUL FIlE: ZLIN.TIMPY ...ttt e b e et st aeeae e e e teseestesresaesneenneneennens 92
Error While ISeeKing OULPUL FIIE! ... .ocui ittt s es e e e e se e st e s aesrenre e e eneeneenes 92
Error WHiting OULPUL FIHEY ...t e e e e e st e s aeeaees e e e en e seenteseesreeneeneeneeneenes 92
Error whilereading OUEPUL FITE! ..ot st b e e b e bbb neene s 92
Attempted to write outSide Of fIllE DOUNTS! .......cooiiie e e 92
I\ TR T ] o101 A0 AV = LRSS 93
(O] 01U [o a1 €= Q= o o SRS 93
(O Vo] o1l g F= VT 1= (=0 IR o] ) o g SRS 93
(O o] o ao] 1= 0 IR B 1 1= I RS 93
1o =TI NN TR = To (o 1 =T o L 93
L@ 111 1 1= 12T 2 PR 93
Couldn't OPEN FILE N PASS 2! ...ttt bbbt s e bbb et et b e b et e b et e b b 93
UNKNOWN 108N TTEM (OXXX)] .ttt b e bbbt b et b e b e bt b e e bt e e e eb e b e e ebennennenis 93
Section 'SECT' hasdifferent typein module ' FILE:MODULE'! ... 93

© The Western Design Center, Inc. 2005 6



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
Overlap of NN bytesin section 'SECT' of '"FILE:MODULE'! ...t 93
Section SECT's ROM image exceeds bank $XX DY SXX ... e 93
Attempt tolocate section "SECT' MOrethan ONCE! .........cociierieiierice ettt b 94
Module'FILE:MODULE' t00 DIigtO fitl.....coiieiiiiciceseese ettt st st neeneas 94
Section 'SECT' overlaps section 'SECT' by NN bytesat address OXXX (ROM).......cccovvererieerenieveseseseseeseene e 94
Section 'SECT' overlaps section 'SECT' by NN bytesat address OxXX (Relocatable).........ccccvevevvrvvenenieeseenninnns 94
Can't mix 65xxx and 65032 0bject MOAUIE TYPES! .....cveiiie e ere e enaeneens 94
Library format iSTNVAITA! ..ottt b e e b e b st b e b st bt et eseeb e b e seeb e s b e seebenbeneeneas 94
CaAN't OPEN FILE ..o e e e E b h e e e e e e s et e R e e Rt bt e be e e e R e ne e R e Rt nneer e e e nnennens 94
Couldn't read ODJECE FIIE FTLE! ... ettt bttt e e e b e s be e aeeae e e e eeseesbesbesaesne s e antannens 94
N\ oo ol o= ot 11 L I SRRSO 94
L8 aTo 1= T aT= o ISV 0] o o) RS 7 S 94
Tz TaTe o I o1U ao )l = g Vo [~ S 94

AT RS PPR 96

© The Western Design Center, Inc. 2005 7



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

THISPAGE LEFT INTENTIONALLY BLANK

© The Western Design Center, Inc. 2005 8



TheWestern Design Center, Inc.
September 2005 Assembler/Linker v3.49

CHAPTER 1 Introduction

This manual provides all the information needed to develop assembly language programs for the W65xxx series of
microprocessors using the WDC Software Development System. The WDC software devel opment system consists of a two-
pass macro assembler, an object module linker, and an object module librarian. There are two WDC assemblers called
WDCO02AS and WDCB816AS. They are identical in function with two exceptions. First, the default instruction set for the
WDCO02AS assembler is the 65C02 while the default instruction set for the WDC816AS assembler is the 65C816. Second,
the WDCO02A'S assembler checks for the environment variable WDC_INC_6502 while the WDCB816AS assembler checks for
WDC _INC 65816. Throughout this manual, when the assembler is referenced, the name WDCxAS will be used.

Assembler

The WDC assembler, WDCXAS, translates assembly language source files into object files. The assembler supports the full
6502 and 65816 instruction sets including alternate mnemonics for a number of the instructions. Twenty-four different
addressing modes are supported. Subsets of the full instruction set for the 6502 and 65C02 can be selected. The extra
instructions of the R65C02 can aso be selected. Assembler directives control the organization of source files into modules
for the creation of libraries. Other directives allow the creation and nesting of up to 250 named sections of code or data as
well as 5 pre-defined sections. Sections can be ““org"ed at an absolute address or can be located by the linker. Symbols can
be made private to a source file or public so they can be referenced by other source files. Common definition files can be
referenced by any sourcefile. Additional source files can be appended to any sourcefile.

Assembly language source statement parsing can be tailored by the setting of the default number base, tolerance of spacesin
operands, and the size of index registers and accumulator. A full range of directivesis available for the generation of data.
Block fills of memory, ASCII strings, and byte, word or long size constant data can be generated. There are also directives
for controlling how ASCII strings are converted to bytes, a date directive for generating the ascii byte data equivalent of the
current date, as well as the ability to reserve blocks of memory with no initial value.

The assembler also provides a fast macro capability with argument passing. Macros may be nested and may recurse. Specia
label handling is available for recursive macros. A full range of conditional directives make macros extremely powerful.
The assembler can optionally produce alisting file. This file can be tailored to list only those sections of code desired. The
page size, length, heading and subheading are all modifiable. Listing of expanded macros and false conditionals are also
controlled by assembler commands. All in al, the assembler provides all the facilities needed for modern assembly language
program development.

Linker

The assembler does not generate output files directly. Instead, object files are created that can be combined together with
other object files and possibly libraries to produce the fina output program. The program that combines object modules and
produces the final hex output is the linker, WDCLN. The linker acts as an organizer. It reads al the object files determining
where each will end up in memory or in ROM. The linker then patches any references that occur from one file to another
with the proper address. Finally, the linker produces the hex output file and symbol table in the formats requested.

Librarian

The librarian, WDCLIB, collects object files together into asingle library file. The librarian places a specia dictionary of all
the functions defined within the library at the front of the library. The linker can use this dictionary to find the functions it
needs in the library very quickly. Only the functions needed by the current program are copied from the library into the
output file.

© The Western Design Center, Inc. 2005 9



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Manual organization

There are alot of details in dealing with an assembly language development system. As aresult, this manual is broken into
two basic parts. The first part provides a general overview of the development system and how to use it. In particular, it
covers the process of creating assembly language programs, the program structure, the syntax of assembly language
statements and how to write and use macros. The second part is more of a reference manual. It provides short descriptions
of each of the programs with their options detailed, alist of al the assembler mnemonics and addressing modes, and all of the
assembler directives grouped by functionality. Numerous examples are present throughout the text.

© The Western Design Center, Inc. 2005 10



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

CHAPTER 2Files

This CHAPTER discusses the general process of creating assembly language programs. It covers the whole development
cycle and provides an overview of how the different piecesfit together.

Sourcefiles

All assembly language programs begin with the source file. The source file is a text file, which contains assembly language
statements. Each statement contains a processor opcode, an assembler directive, a section directive or a macro name.
Assembly language files are created using a text editor. Source files usually have an extension of .ASM. The source to an
entire program does not need to all bein onefile. There are several reasons for dividing a program into different source files.
One reason involves the use of macros.

Macro files

Macros are sequences of assembly language statements that are defined and that can replace a single statement in the source.
Macros allow commonly used sequences of instructions to be defined once and a name associated with that definition. Then,
whenever the name is used, the name is replaced with the statements of the macro definition. Through the use of macro
arguments and conditional expressions, macros can be a very powerful tool for assembly language development. As multiple
programs are developed, a number of useful macros may be produced. Instead of placing these macros in the source file of
each program, it is easier to place the macros in afile of their own. Then this file can be referenced by each program source
file using the assembler INCL UDE directive.

Object modulesand libraries

Modular programming is a second reason for having more than one source file. Different parts of the program can be
developed and tested independently. Then, the individual parts can be combined together by the linker. In addition, useful
subroutine functions can be created, assembled and combined together into a library. A librarian program creates libraries
from object files. The advantage of having alibrary is that only the functions that are used by a program are copied from the
library. It isaconvenient way to organize and access common functions. The assembler translates each source file into an
object file. An object fileis a binary file which contains the trandation of each assembly language statement into it's binary
equivalent. In addition, the object file contains a list of the symbols defined in the source file as well as those symbols
referenced within the source file that aren't defined there.

Output files

The linker takes multiple object modules and combines them together to produce a single output file. Some of the object
modules may come from alibrary file. The output file produced by the linker is either in binary or hex format. A number of
hex formats are supported. An option to the linker selects the desired hex format. This hex file can be used to program
ROMs or can be downloaded into an emulator for testing.

© The Western Design Center, Inc. 2005 11



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

THISPAGE LEFT INTENTIONALLY BLANK

© The Western Design Center, Inc. 2005 12



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
CHAPTER 3 Program Sructure

Each program has a definite structure. All programs consist of two basic quantities CODE and DATA. CODE consists of all
the instructions that control the processor and tell it what to do. DATA is the part of the program where information is
stored.

Modules

As previoudly discussed, each program consists of one or more source files. Each source file usually contains both CODE
and DATA statements. The assembler supports a concept called module. A module is a set of assembly language statements
that can be assembled independently. Most source files are considered a single module by the assembler. Using the
MODULE directive in the assembler, multiple modules can be contained in a single source file. As the assembler
encounters each module, it treats each module as though it had occurred in its own separate file. The only real use and
advantage of creating multiple modulesisin creating libraries. If multiple functions were defined in a single source file then
calling just one of the functions would force all of the functions to be included in the output file. Since the module is the
smallest unit that the linker will work with, placing each function in its own module allows the linker to only select the
functions that are referenced.

Sections

Whereas modules provide a means of organizing source code, sections are used to organize where the results ultimately are
placed in memory. The easiest way to understand sectionsis to consider program code and program data. A typical program
consists of a number of processor opcodes called the code and some amount and type of information called data. Since the
processor is not smart enough to be able to distinguish code from data, the two cannot be intermixed at will. As aresult most
programs tend to contain a single block of program code and a single block of data. Sections are a way for the programmer
to indicate whether the output should be considered code or data. A program is organized into sections. There are a number
of pre-defined sections. Two of these are CODE and DATA. When a source file is assembled, the assembler assumes that
the initial section isa CODE section. At any time, a different section can be activated by using the name of the section as a
directive. When adifferent section is activated, the previous section is pushed onto a stack. When a section is ended with the
ENDS directive, the section stack is popped and the previous section becomes active again.. When the programis linked all
of the pieces of each section are joined together.

Note: Sections can be nested up to 500 deep

Note: The name of a section istruncated to 8 characterson the Linker display screen.

Thus, the input source file looks like:

CODE
codel statements
DATA
datal statements
ENDS
code2 statements
DATA
data2 statements
CODE
code3 statements
ENDS
data3 statements
ENDS
END

© The Western Design Center, Inc. 2005 13



TheWestern Design Center, Inc.
September 2005 Assembler/Linker v3.49

When the output file is assembled, the program will look like:

CODE

codel statements
code2 statements
code3 statements
DATA

datal statements
data2 statements
data3 statements
END

Thus, sections provide a convenient method of grouping the source together of both code and data while still maintaining the
distinction between them. A typical example is a subroutine that maintains its own work variables. Using sectionsit is easy
to keep the data with the code.

For example:

DATA

TMP DB 0
ENDS

SWAP: LDA ARRAY X ;get value
STA TMP ;saveit
LDA ARRAYY ;get other value
STA ARRAY X ;copy it
LDA TMP ;get saved value
STA ARRAY,Y ;and copy that
RTS ;all done, return

Pre-defined sections
The assembler has five pre-defined sections whose names and descriptions are;

PAGEO This section is reference only and is used for creating labels that refer to the direct page. For the 6502,
address $00-$FF. For the 65816, address $00:0000- $00: FFFF.

CODE  Thisisthe main program section.

KDATA Thisis aspecia data section for constant initialized data that is never modified. For example, a lookup
table of constants.

DATA  Thisisinitialized data that will be modified.

UDATA Thisisdatathat isnot initialized.

Three different data sections have pre-defined characteristics to promote efficient use of ROM and RAM memory space.
In addition, up to 250 additional sections can be created and named by the programmer using the SECTION directive.

Absolute ver sus Relative

Sections can be either absolute or relocatable. An absolute section starts at a fixed address as specified by an ORG statement
in the source code. When the assembler sees an ORG statement, it marks the section as absolute and as it assembles each
statement, it treats any labels defined in the section as being exactly at the absolute location specified. A relocatable section
works alittle different. When the assembler assembles each statement, it treats each label as being relative to the beginning
of the section. Nothing is considered absolute. Then, after the linker collects all the pieces of each section, the entire section
can be located at an absolute address by the linker. The linker will then adjust all the references to relocatable labels turning
them into absolute.

© The Western Design Center, Inc. 2005 14



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

All sections begin as relocatable sections unless created with the SECTION directive followed by either the OFFSET or
INDIRECT options. A section also becomes absolute if an ORG directive occurs within the section.

Section location

If a program is composed of severa different pieces of code and/or data that must be located in various locations, then
absolute sections and the ORG directive are definitely the way to go. For example, to place the page number in the first two
bytes of the first three pages of bank zero, consider the following source fragment:

DATA

ORG $0000
WORD $0000
ORG $0100
WORD $0001
ORG $0200
WORD $0002
ENDS

On the other hand, if all that is needed is to put the code one place and the data a different place, then relocatable sections are
worthwhile. Since relocatable sections do not start at a fixed address, the linker is used to place these sections. Using the
linker it is possible to place each of the sections at a particular address. Alternatively, the location of the code section can be
placed and the linker will automatically place any remaining sections one after the other. In this case, the only option to the
linker is the —C option followed by the address where the code is to be placed. When the starting address of a section is not
specified, the linker places it immediately after the preceding section. The first four sections are always CODE, KDATA,
DATA, and UDATA in that order. Any user-defined sections follow UDATA and occur in the order in which the linker
encounters them.

Copying data

In some applications, the program resides in ROM. In this case, the initialized data usually resides in ROM as well.
However, what is desired is to copy the datato RAM and have the code in ROM access the data at its RAM address, not the
ROM address. Thisis easily accomplished using linker optionsto set the RAM and ROM address of the DATA section. For
example:

WDCLN -C8000 -D1000, MYPROG.OBJ

will place the CODE section starting at 8000 hex. This is both the ROM address and the address at which the code is
expected to run. The second argument will relocate the DATA section and all references to the DATA section to hex 1000.
However, since an empty ROM address is specified in the argument, the ROM address of the DATA section will be
immediately following the KDATA section. If the KDATA section is empty, the DATA section will immediately follow the
end of the CODE section. In this case, when the program starts up, the DATA section will need to be copied from ROM to
RAM. The included example startup file STARTUP.ASM shows one method of achieving this. This code also sets any
unutilized data to zero, sets up the stack pointer and the Data Bank Register.

© The Western Design Center, Inc. 2005 15



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
Startup.ASM

Included on the distribution disk is a sample assembly language source file called STARTUP.ASM. This file contains code
that performs several important functions related to program startup. It aso contains a section which defines the standard
interrupt and reset vectors. This file can be customized to match the application that you are developing. We will examine
the 816 version of thisfile section by section.

STACK EQU $FO00 ;CHANGE THIS FOR YOUR SYSTEM
STARTUP SECTION OFFSET $FF80
START:

CLC ;Clear carry

XCE ;clear emulation

REP #$30 ;16 bit registers

LONGI ON

LONGA ON

LDA #STACK ;get the stack address

TCS ;and set the stack to it

The first section does three things that are necessary before the remaining sections can run properly. First, it defines a new
section called STARTUP which will be located at the end of bank O at location $FF80. Next, we assume that we arrive here
from the RESET vector so we will be in emulation mode. Thus, the first thing we do is switch to native mode and make sure
that the registers are sixteen-bits wide and that the assembler knows it as well. Finaly, we set the up the hardware stack
pointer. The STACK equate should be changed to reflect where you wish the top of the stack to be in your system.

SEP #$20 :8 bit accum

LONGA OFF

LDA #\ BEG_DATA :get bank of data
PHA

PLB ;set data bank register
REP #$20 :back to 16 bit mode
LONGA ON

This piece of code sets the Data Bank register by pushing the bank part of the DATA section and then popping it into the
register. The _ROM_BEG _DATA and _BEG_DATA symbols are symbols automatically created by the linker. For each
section, it creates three symbols, ROM_BEG_secname, BEG secname and END_secname, which correspond to the rom
location and the execution beginning and end of the section. These will be used more in the next two sections of code.

LDA # END DATA- BEG DATA ;number of bytesto copy
BEQ SKIP ;if none, just skip

DEC A ;less onefor MV N instruction
LDX #< ROM_BEG_DATA ;get sourceinto X

LDY #< BEG DATA ;get destinto Y

MVN # ROM_BEG DATA# BEG DATA ;copy bytes

SKIP:

Next, we copy the DATA from ROM to RAM. This section assumes that the DATA has been linked to reside in RAM, but
is physically in the ROM at some location specified by ROM_BEG_secname. |If the DATA does not need to be copied, this
section can be deleted. First, we calculate the size of the DATA section by subtracting the end of the section from the
beginning. If thesizeis zero, we skip ahead. If the size is non-zero, we decrement it, load the X and Y registers with the low
sixteen bits of the ROM and RAM addresses. Finally, we copy the data using the MV N instruction with the bank parts of the
ROM and RAM addresses.

© The Western Design Center, Inc. 2005 16



TheWestern Design Center, Inc.

September 2005

LDX
BEQ
LDA
SEP

LDY

LOOP STA
INY
DEX
BNE
REP

DONE:

Assembler/Linker v3.49

# END_UDATA- BEG UDATA ;get number of bytesto clear
DONE ;nothing to do
#0 ;get a zero for storing
#$20 ;do byte at atime
# BEG _UDATA ;get beginning of zeros
[0,Y ;clear memory
;bump pointer
;decrement count
LOOP ;continuetill done
#$20 ;16 bit memory reg

Next, we need to fill the un-initialized data area, UDATA, with zeroes. First, we calculate the size of the UDATA section
and if it is zero, skip ahead. Then, we get zero into the accumulator and make it eight bits wide. Next, we put the beginning
of the UDATA section into the Y register. Finally, we loop through all of the UDATA section storing the zero in the
accumulator. When the loop finishes, we restore the accumulator to sixteen bits.

XREF
JMP

XREF
XREF
XREF
XREF
XREF

MY START ;change MY START to yours
>MYSTART ;long jump in case not bank 0

_ROM_BEG_DATA
_BEG_DATA
"END_DATA
_BEG_UDATA
_END_UDATA

This last section of code performs a long absolute jump to the start of the actual program. This allows the program to reside
anywhere in the processors address space. The XREF directive tells the assembler that the MYSTART symbol is defined in
another file and will be filled in by the linker. Change MYSTART to be the name of the entry point of your assembly
language program. It is also necessary to define the entry point to be public in the file that defines it using XDEF. The last
five directives declare the linker special symbols external so that the linker will know to fill themin.

ORG

N_COP
N_BRK
N_ABORT
N_NMI
N_RSRVD
N_IRQ

E_COP
E_RSRVD
E_ABORT
E_NMI
E_RESET
E_IRQ

$FFE4

DW
DW
DW
DW
DW
DW
DS
DW
DW
DW
DW
DW
DW
ENDS
END

OQOOOOQOOOOOO

© The Western Design Center, Inc. 2005 17



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

The last section implements the reset and interrupt vectors. The ORG directive makes sure that they are in the right location.
The only vector that is filled in is the RESET vector which points to the START label which is at the beginning of
STARTUP.ASM. To use any of the remaining vectors ssimply replace the “0" with the label of the corresponding interrupt

routine. Note that the vectors are only sixteen-bits wide which limits them to an address in Bank zero. To use an interrupt
routine that is not in Bank zero, add the following lines before the ORG directive for each vector you wish to use:

JMPO JIMP  >FUNCO

Then, place the label IMPO in the vector table. The basic idea is to vector into Bank zero to a long absolute jump to the
interrupt handler.

Nintendo development

This section briefly describes those features of the development system which have been provided to aid in development for
the Super Nintendo Entertainment System (SNES). The linker provides three options which are specifically designed to
enhance SNES development. The -HN option produces ISX hinary format that can be used with the Nintendo debugger.
Full symbol support is provided along with LONGA/LONGI disassembly support. The -MN, -MN80 and -MN21 options
are provided primarily for C language programmers who don't wish to specify the location of their routines explicitly. When
the -MN option is specified, the Nintendo memory map is used when creating the final output program. The initial code
segment starts at $00:8000 and each succeeding bank code segment starts at $8000 as well. The linker first places absolute
sections and sections which have a ROM org address specified as a link option. Then it attempts to place code modules in
any holes, expanding to new banks as needed. The -MN80 option is exactly the same, but uses the fast ROM addresses
starting with bank $80. The -MN21 option operates similarly, but starts at $C0:0000 and starts at $0000 of each additional
bank. Notethat for C programs, they must have been compiled with Large Code when using these linker options.

© The Western Design Center, Inc. 2005 18



TheWestern Design Center, Inc.
September 2005 Assembler/Linker v3.49

CHAPTER 4 Satement Syntax

All lines other than comment lines and blank lines have the following format:

LABEL OPERATION OPERAND

Labels are optional on most statements, required on a few and illegal on the remainder. Operands are required or illegal on
most statements and optional on afew.

Comments

A comment normally appears after a semicolon. If an entire line is to be a comment, an asterisk may be used instead.
Comments also may appear after the operand field of an instruction, macro call or directive. By default, spaces are not
allowed in the operand field, so a space before the comment will be sufficient. However, if the SPACES ON directive has
been given, a semicolon is required to remove the ambiguity.

L abels

Labels give the programmer the ability to give a name to a location, value or macro that occurs in the assembly language
program. When a label is defined it must be the first thing on that line. It may be preceded by spaces or tabs only if it is
followed by a colon, otherwise it must begin with the first character of the line. Labels can be up to 64 characterslong. A
label must begin with a letter or either of the characters™ ' or "~'. The rest of the label must contain letters, numbers, or the
characters™ 'or "~'.

Some examples of labels are:

1 9 (columns)
labl
lab2:
__foo
~~main

By default labels are only visible to the module or file in which they are defined. If the alabel is made global using one of
the XDEF, GLOBAL, or PUBLIC directives, then it is visible to any other module.

There are also temporary labels that have an even smaller range of visibility than normal labels. Temporary labels are only
visible from one normal label to the next normal label. Temporary labels begin or end with a ? and may contain any of the
characters contained in anormal label. Temporary labels that begin with a ? are different from those that end with one. The
? character can be changed by using the LLCHAR directive. Labels are optional on all processor instructions and macro
calls and on most assembler directives. A label may also appear on aline by itself.

WARNING: Thefollowing arereserved labels: A, X and Y.

Operation

There are several different types of operations that can occur in an assembly language statement. All operation opcodes are
case independent. In addition, except for processor instructions, all directives may be preceded by a ".' to distinguish them
from processor opcodes.

© The Western Design Center, Inc. 2005 19



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Processor Instructions

The full list of processor instruction mnemonics is presented in CHAPTER 11. The subset of valid processor mnemonics is
dependent on the last CHIP directive executed. The WDC816AS assembler defaults to CHIP 65816 and the WDC02AS
assembler defaults to CHIP 65C02, however other processors in the same family can be selected. Each instruction has one
or more allowable addressing modes. These are described in the data sheets that accompany each processor. The full set of
addressing modes supported by the W65C816 processor is described in CHAPTER 11.

Assembler Directives

There are a wide and varied assortment of assembler directives which control various aspects of the assembly process.
CHAPTER 11 provides detailed information on each assembler directive supported. The assembler directives are grouped
into six main aress:

File and Symbol Control
Parsing Control

Data Definition Control
Macro Control
Conditional Control
Listing Control

Section Directives

Section names can be used as an assembler directive instructing the assembler to place subsequent statements in the named
section. There are five predefined section names: PAGEO, CODE, KDATA, DATA, and UDATA. Up to 250 additional
section names can be created.

Macro Calls

A macro, once it has been defined, can be used like any other assembler directive. Macro calls may have labels and may or
may not have arguments specified in the operand field. See CHAPTER 5 on Macros and Conditionals for more details.

Operands

Operators

The assembler supports a number of operators. Each operator has a precedence associated with it. Operators with the same
precedence are evaluated left to right. Parentheses can be used to group expressions and change the operator precedence.
For example, the expression:

atb*c
isinterpreted as:
at(b*c)

because the *' has a higher precedence than the "+'. Parentheses can be used to re-order the expression to achieve the desired
result:

(a+b)*c

© The Western Design Center, Inc. 2005 20



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
Unary Operators

Unary operators are followed by a single expression.

+ EXPR specifies a positive expression
- EXPR negates the value of EXPR
.NOT. EXPR bit-wise complement of EXPR
| EXPR

Binary Operators

L**R raise L to the R power

L*R multiply L timesR

L/R divideL by R

L .MOD. R get the remainder from dividing L by R
L>R logically shift L to theright R times
L .SHR.R

L<<R shift L to the left R times

L .SHL.R

LR addL toR

L-R subtract R from L

L&R do abit-wise AND of L and R

L .AND.R

L|R do abit-wise OR of L and R
L.OR.R

LAR do ahit-wise XOR of L and R

L . XOR.R

Comparison Operators

L=R left expression equal to right

L .EQ.R

L>R left expression greater than right
L.GT.R

L<R left expression less than right

LLT.R

L .UGT.R left expression unsigned greater than right
L.ULT.R left expression unsigned less than right

Operator Precedence Table

Unary operators have the highest precedence, comparison operators have the lowest. In the following table, operators on the
same line have the same precedence. Each succeeding line has lower precedence than the preceding line.

Unary operators (+, -, \, .NOT.)
**

*,1,.MOD., >>, .SHR,, <<, .SHL.

+, -

&, .AND.

[, .OR, ", .XOR.

Comparison operators (=, .EQ., >, .GT., <, .LT., .UGT., .ULT.)

© The Western Design Center, Inc. 2005 21



TheWestern Design Center, |

nc.

September 2005

Assembler/Linker v3.49

Specia symbolsto help calculate Numbers and Addresses (ADDRESSING MODE SYMBOLYS)

Symbol Name

| Pipe

! Exclamation

< Less than

> Greater than

# Pound

A Caret

* Star

$ Dollar

#( ).low.

#( ).high.

>>

#x" (pound double quote)
#a@ (pound single quote)
Numbers

Use

Absolute Address

Absolute Address

Lower 16 bits only

8 hit shift to the right

Immediate

Upper 16 bits only

Program Counter at the next location

Program Counter current hex value

Lower 16 bits only

Upper 16 bits only

16hit shift to right (used to target the bank, load bank address)
Use ASCII character for Immediate.

Use ASCII character for Immediate. If LongA isonthen# ‘23 isvalid.

Numbers can be specified several different ways using different bases. The default baseisdecimal. The base can be changed
by using the RADIX directive. To indicate a number that is not in the default base, a letter is appended to the number

indicating the base to use.

The following table lists the prefixes and the corresponding base:

$ hexadecimal
% binary
The following table lists the suffixes and the corresponding base:
B binary
OorQ octal
D decimal
H hexadecimal
Addresses

Addresses can be specified using a number as defined in the preceding section. Alternatively, an address can be specified as
a bank number followed by a colon followed by an address.

For example:
LDA  2:30H
LDA  $20030

produce the same result.

When the assembler is parsing addresses, it starts by assuming that an addressis ABSOLUTE. If the address is greater than
FFFFH, then it assumes that it is a long absolute address. It is possible to directly specify how an address should be
interpreted by the assembler. Thisis especially important when using symbolic names which are defined externally.

To specify an address that is a direct page address, the “<' character precedes the address or expression. For example,

consider the following two statements:

LDA O
LDA <0

© The Western Design Center, Inc. 2005

22



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

The first statement is interpreted as absolute location 0 in the bank specified by the Data Bank Register. The second
statement will load from location 0 in the direct page. To force an address to be an absolute address, the °|' character or the ™!
character precedes the address or expression. If an expression vaue is less than 10000H, then this prefix is redundant.
Finally, to force along absolute address, the *>' character should precede the address or expression.

For example:
LDA  |1:0000H ;load from 0 absolute
LDA >0 ;load from 0 in bank O

In the first example, the bank valueisignored.
The address prefix operators must be used at the beginning of the expression.

I mmediate Operands

When an instruction uses the IMMEDIATE addressing mode, the operand is preceded by a “# character. The value of the

expression following the “# character is truncated to either eight or sixteen bits depending on the settings of the CHIP,
LONGA and LONGI.

The "# character may be followed by a second character which causes the expression to be shifted right before truncating.
The "<' character causes no shift to occur, the *>' character causes an eight bit shift, and the "' character causes a sixteen bit
shift. Thus, these characters allow access to the low byte, the high byte and finally the bank part respectively.

For example:

#01020304H 04H 0304H
#<1020304H 04H 0304H
#>1020304H O3H 0203H
#11020304H 02H 0102H
#(1020304H).low. 04H 0304H
#(1020304H).high. 03H 0102H

shows the effect of these prefixes with an eight-bit and sixteen-bit expression.

The expressions “#( ).low." and "#( ).high.' can be used aswell. The DBREG and DPAGE directives can be used to control
the generation of addresses for absolute symbols. The DBREG is used to generate an absolute address if the symbol is
located in the Data Bank specified in the DBREG directive. Otherwise, long absolute addressing will be used. Similarly, the
DPAGE directive can be used to indicate the run-time value of the Direct Page register to allow the assembler to optimize
generation of Direct Page address expressions. For ASCII characters, use LDA #1”.

Character Constantsand Strings

Character constants are delimited by quote characters. Specia combinations of two character sequences may be used or

certain control charactersif enabled by the TWOCHAR directive. Character strings are delimited by either single or double
guote characters.

Program Counter

The characters “$ or ™' can be used in an expression to represent the program counter at the beginning of the current
instruction.

For example:

LAB EQU *
BRA  $+10

© The Western Design Center, Inc. 2005 23



TheWestern Design Center, Inc.

September 2005
Assembler Addressing Modes
8-bit operationslessthan $100 (Page zer o)

Normal direct page addressing:
LDA $43 ;Load Accumulator from: bank zero: direct page: $43

Force absolute addressing: zero page in data bank:
LDA 1$23 ;Load Accumulator from: data bank: $0023

Force long addressing: zero page in data bank zero:
LDA >$33 ;Load Accumulator from; $00:0033
16-bit Operations from $100 thru $FFFF

Normal absolute addressing:
LDA $5643 :Load Accumulator : data bank: $5643

Force direct page addressing:
LDA <$5633  ;Load Accumulator from: bank zero: direct page: $33

Force long addressing:
LDA >$5633 ;Load Accumulator from: $00:5633
24-bit Operations over $FFFF

Normal long addressing:
LDA $456733 ;Load Accumulator from: $45:6733

Force absolute addressing::
LDA 1$567833 ;Load Accumulator from: data bank: $7833

Force direct page addressing:
LDA <$567833 ;Load Accumulator from: bank zero: direct page: $33

Assembler/Linker v3.49

© The Western Design Center, Inc. 2005

24



TheWestern Design Center, Inc.
September 2005 Assembler/Linker v3.49

CHAPTER 5 Macros and Conditionals

This CHAPTER describes how to write and use macros and conditionals.

M acros

Macros make complicated or repeated sets of assembly language instructions much simpler to use. Conditionals within
macros allow a single macro to be useful in multiple situations. The use of macros greatly enhances the readability of
assembly language source files.

M acr o Definition

Macros must be defined before they are used. Each macro definition specifies the name of the macro and the names of the
arguments to the macro if any. The syntax of the definition is:

LABEL MACRO [ARGL,ARG?2,..]
where the LABEL specifies the name of the macro and the arguments are optional .
For example:
ADD MACRO SRC1,SRC2,DEST
defines amacro named ADD with three arguments.

Following the macro definition line, are the lines of text that define the macro. All lines following the macro are saved in a
text buffer up to aline containingaM ACEND or ENDM directive. Thisline terminates the macro definition.

NOTE: the MACEND or ENDM directive line may not contain alabel.

For example:
ADD MACRO SRC1,SRC2,DEST
CLC
LDA SRC1
ADC SRC2
STA DEST
MACEND

defines a macro which adds the first two arguments and stores the result in the third.
CallingaMacro

To call a macro, al that is needed is to use the name of the macro just like an assembler directive followed by the macro
arguments, if any. For example, the previously defined ADD macro could be invoked as:

ADD VAR1#2VAR1

which would add 2 to the contents of varl.

© The Western Design Center, Inc. 2005 25



TheWestern Design Center, Inc.
September 2005 Assembler/Linker v3.49

Redefining Assembler Directives and Opcodes

Since macro names are added to the assembler opcode and directive table, they will override an existing assembler directive
or opcode. The assembler will generate an error if such a condition exists unless the MACFIRST ON option has been
specified. Care should be taken when choosing macros names to avoid conflicts.

Macro Labels

Within a macro, there are several additional forms that labels may take. First, it is possible to concatenate two or more
symbols, macro arguments and expressions using the "@' character. When the @' is encountered, the current symbol ends
and a new symbol begins, with the concatenation character discarded. The new symbol may be another symbol, a macro
argument or the value of an expression. If an expression is specified, the expression must be enclosed in a balanced set of “<'
and *>' characters. For example:

TST MACRO ARG

A@ARG DB 0

B@<ARG> DB 0

C@<2*ARG> DB 0
ENDM

defines a macro with one argument.

Within the macro body, alabel is generated using the letter “A' followed by the literal value of the argument passed when the
macro is invoked. The second label generated uses the letter "B’ followed by the value of the argument. The third label
generated uses the letter "C' followed by the value of the argument multiplied by 2.

Thus,
VAR EQU 5
TST VAR
will generate:
TST VAR
+ AVAR DB 0
+ B5 DB 0
+ C10 DB 0

A second form of label only valid within a macro uses the “# character to generate unique labels. 1f a macro defines a label
within the macro, then calling the macro more than once will generate a duplicate label. This can be avoided by appending
the "# character to the end of the label name. The assembler will substitute a four digit number for the '# character. This
number is unique to each macro call.

For example, the program:

TEST MACRO

LAB# NOP
JMP LAB#
ENDM

TEST
TEST

© The Western Design Center, Inc. 2005 26


mailto:A@ARG
mailto:B@<ARG
mailto:C@<2*ARG

TheWestern Design Center, Inc.

September 2005

will generate the listing:

1 TEST

2 LAB#

3

4

5

6
+ 6 00:0000: EA LABO001
+ 6 00:0001: 4C xx XX

7
+ 7 00:0004: EA LABO0002
+ 7 00:0005: 4C xx XX

Conditional assembly

Assembler/Linker v3.49

MACRO

NOP

JMP  LAB#
ENDM

TEST
NOP
JMP  LABO0O1
TEST
NOP
JMP  LABO002

Using conditional assembly, it is possible to have the same assembly language source produce different output depending on
how certain elements are defined. A typical conditional consists of the conditional test followed by the statements that are
assembled if the condition was true. These statements may be followed by an EL SE directive. If the EL SE is found, then
the following statements are assembled if the condition was false. The conditional is terminated by either an ENDIF or

ENDC directive.
For example:
IF CNT>500
MESSG CNT TOO HIGH!
ENDIF

IFTRUE VAL>2

LONG 0

ELSE

WORD 0

ENDIF

Conditionals can be nested for more complex conditions. This example generates the proper size zero depending on the

vaue of VAL.

IF VAL=4

LONG 0
ELSE

IF VAL=2

WORD 0

ELSE

BYTE 0

ENDIF
ENDIF

Each conditional test must be balanced by a corresponding ENDC or ENDIF. Note that all statements containing
conditional tests or the directives EL SE, ENDC, and ENDIF may not have alabel.

© The Western Design Center, Inc. 2005

27



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

THISPAGE LEFT INTENTIONALLY BLANK

© The Western Design Center, Inc. 2005 28



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

CHAPTER 6 WDCxxAS (ASSEMBLER)

The WDC macro assembler, WDCXAS, provides all the tools and facilities to do professional assembly language program
development.

Running the Program
The format for the assembler command is:
WDCXAS[-GSL1] [-| PATH] [-Dsym[=val]] [-O OUTPUT] SRCFILE
where SRCFILE is the name of the assembly language file that is to be translated. For example the command:
WDCXAS-O MYPROG.OUT MY PROG.ASM

will read the input file MYPROG.ASM and place the object code into the file MYPROG.OUT. If the -O option had not been
specified, the result would have been placed in the file MYPROG.OBJ since .OBJ is the default output extension. If the ASM
extension had not been specified, the assembler would have looked for a file with no extension and then, if not found, would
add the .ASM extension and tried again. Thus the simple command:

WDCXAS MY PROG

would assemble MYPROG.ASM and place the output in the file MYPROG.OBJ.

WARNING!: Theline“WDCxxAS’ must belessthan 256 characters.

Option Summary

-1 Use version 1 control characters.
-D Define global equate.
-G Generate assembly source information.

-l Specify include directories.

-K Path name specifying name of listing fileplacedin __ FILE__
-L Generate alisting file.

-0 Specify the name of the output file.

-S Pass local symbolsto linker.

-V Display the amount of RAM needed to assemble the program
-W Causes a change in the default page width to 132

Option Descriptions

-1
Version 1.0 of the assembler used dlightly different control characters. In particular, the macro concatenation character |
was changed to "@', the bit-wise inclusive OR character "' was changed to [, and the bit-wise exclusive OR character "
was added. This option changes the characters back to the 1.0 versions for compatibility.

-D
This option is used to define an absolute symbol at run time. The symbol can then be used in conditional statements to

change the code generated. The symbol can be followed with an equal sign and an absolute decimal value. If no value is
specified, then the symbol is given the value one. For example the following command line:

© The Western Design Center, Inc. 2005 29



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
WDCXAS -DCOUNT=3 -DDEBUG FILE.ASM

will set the absolute symbol COUNT to the value 3 and the symbol DEBUG to the value 1. Specifying these options is
equivalent to the following statements appearing at the beginning of the sourcefile:

COUNT GEQU 3
DEBUG GEQU 1
-G

The assembler and linker can now produce source level debugging information for programs. When this option is specified,
the assembler will generate special object file records which indicate the number of bytes generated for each source line in
the file. Information is also generated to determine the source file containing the source line. This option will increase the
size of object modules generated by the assembler. The INCDEBUG directive can be used to control the generation of
source information for included files. The —G option creates the .bin file used with the WDC Debugger (WDCDB.EXE) and
the WDCDB.INI files.

-1
When the assembler encounters an INCLUDE or APPEND directive, the assembler looks in specific directories in a specific
order for the named file. First, the current directory is checked. Next, any directories that have been specified using the -
option will be searched. Finaly, if an environment variable called WDC_INC_ 65816 or WDC_INC_6502 has been
defined, then any directories specified in that variable will be searched.

For example, if one of the following linesisin the AUTOEXEC.BAT file:

SET WDC_INC_65816=C:\WDC\INCLUDE;C\WDC\MACROS
SET WDC_INC_6502=C:\WDC\INCLUDE;C:\WDC\MACROS

then, the command:
WDCXAS-I| CAMYINC PROG

will assemble the file PROG.ASM. If the file contains any INCLUDE or APPEND directives, then the assembler will look
for the specified file in this order:

current directory
C:\MYINC

C:\WDC\AINCLUDE
C\WDC\MACROS

-K
This option causes the path name specifying the name of the listing file to be placed in the reserved word __ FILE__.
-L
This option instructs the assembler to generate a listing file that will have the same root name as the output name and an

extension of .LST. The format and output control of the listing file are controlled by assembler directives within the source
file.

© The Western Design Center, Inc. 2005 30



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
-0

This option is used to specify the name of the output file. Normally, the output file has the same root name as the source file,
and the extension is changed to .OBJ. For example, the command:

WDCXAS MYPROG.ASM

will generate an output file called MYPROG.OBJ. If the -O option is used, the output file name can be specified directly.
For example:

WDCXAS-O JUNK.REL MYPROG.ASM

will place the same output into afile called JUNK.REL.

-S
Normally, labels that aren't declared global are not placed in the object module since the assembler resolves all references to
them. If the -S option is specified, the symbols are included in the object file so that the linker may pass them on to a symbol
file that can be used when debugging.

-V
Thisisthe Verbose option. This option displays the amount of RAM needed to assemble the program.

-W

This option causes a change in the default page width to 132, creating awide listing.

© The Western Design Center, Inc. 2005 31



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

THISPAGE LEFT INTENTIONALLY BLANK

© The Western Design Center, Inc. 2005 32



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

CHAPTER 7WDCLN (LINKER)

The WDC linker, WDCLN, reads one or more object files and/or libraries and merges them into a single output file.
References from one module to another are resolved during thelink.  The linker operates in two passes. In the first pass,
each object module is scanned to determine what symbols are defined and what symbols are referenced. Symbols that are
defined are entered into a symbol table. When other object modules want the address of a symbol they will look in the
symbol table. If the symbol is not in the symbol table it is added to alist of undefined symbols. If alater module defines the
symbol it is removed from the undefined list. If alibrary is encountered, it's dictionary is repeatedly scanned for any symbols
that match any of the symbols in the undefined list. If such a symbol is found, the module that defines it is loaded from the
library and its symbols are handled just like a normal object module. Through this process, only object modules that are
needed are loaded from the library. Libraries are usualy placed at the end of the list of object files. At the end of the first
pass, all undefined symbol references should be resolved. During the second pass, the linker reads each object module a
second time. Asit reads each module, it generates the final output file based on the information in the object module.

Running the Program

Note: There are calls to user defined functions that are system dependent.
Example: _unlink, __close, __isatty, _write, __Iseek, fseek.
__read, __open,__creat, __ access(see WDC_SDS/INCLUDE/FCNTL.H

The WDCLN program is started by giving a command with the format:

WDCLN [-BEGNQTVWX] [-Hxx] [-MxX] [-SxX] [-O OUTPUT] [-Zsec=XX,XX]
[FAsec=X X, XX] [-CXX ,XX] [-DXX,XX] [-KXX,XX] [-UXX,XX]
[-Fargfile] OBJL[OBJ2...] [LIB1...] [-LxX]

WARNING!: Theline“WDCLN” must belessthan 256 char acters.

Input files are object files created by the WDCxXAS assembler. The default extension for such an object fileis .OBJ. If an
object file is named without an extension, the linker first checks for the file without an extension and then adds the default
extension. If the extension is specified, then the file islooked for only under that name. The linker looks for the input filesin
the current directory. If they are not found in the current directory, the linker looks at each of the directories defined in the
WDC_LIB environment variable.

Placing aline such as;
SET WDC_LIB=C:\WDC\LIB

in the AUTOEXEC.BAT file will tell the linker where to look for common object files and libraries. Multiple directories may
be separated by semi-colons. Libraries of object modules are created by the WDCLIB utility. Libraries can be specified
using the full path and name of the file. Shorthand versions of libraries can also be specified using the—L option. The name
of the output file is usually taken from the name of the first object module unless the -O option is specified. The extension
on the object module name, usually .OBJ, is replaced by an extension appropriate to the hex format requested. For example,
the command

WDCLN PROG.OBJ STUFF.OBJCT.LIB

would create an output file called PROG.S19 since Motorola S19 format is the default.

© The Western Design Center, Inc. 2005 33



TheWestern Design Center, Inc.

September 2005

The output file can be explicitly specified by using the—O option. In that case, the command:

WDCLN -O TEST.HEX PROG STUFF -LCS

Assembler/Linker v3.49

would place the program in the file called TEST.HEX. Note that even though the .OBJ extensions are omitted and the library

is specified using the -L option, the arguments will reference the same files as in the previous example.

Option Summary

-A
B
-C
-D
-E
-F
-G
-H
-J

K
L

-M
N
-0
-P

Specify section address.

Place bank info in .bnk file.

Specify CODE address.

Specify DATA address.

Place errorsin a.err file.

Read arguments from the specified file.
Generate source debug information.
Specify the hex output format.

Sort module info by name.

Specify KDATA address.

Specify alibrary name.

Specify machine format.

Discard .QCK symboals.

Specify the name of the output file.
Set thefill charactersin the hex output file.
Tell the linker to be quiet.

Specify the symbol file format to use.
Generate amap file.

Specify UDATA address.

Display additional information.
Disable warnings.

Use EMM memory for symbol tables.
Set the spread for the section.

© The Western Design Center, Inc. 2005

34



TheWestern Design Center, Inc.
September 2005 Assembler/Linker v3.49

Option Descriptions
-A

This option is used to specify the relocation and ROM address of the named section. The option is followed by information
in the following format:

-Asection=[XXXX][,[XXXX]]

where section is the name of the section to be located. The section name is followed by an “=' sign which in turn is followed
by the relocation address and ROM address separated by a comma. All addresses are assumed to be hexadecima numbers.
If the comma and ROM address are not present, it is assumed that the relocation address will be used for the ROM address as
well. If the commais present and either the relocation address or the ROM address is missing, then the specified address is
assumed to be the end of the previously specified section. For more information see CHAPTER 3.

EXAMPLE:
-Avec=FFE4 ;ROM and relocation both at FFE4
-Avec=FFE4,8000 ;in ROM at 8000, assembled as though at FFE4
-Avec=FFE4, ;in ROM after previous section
-Avec=,8000 ;in ROM at 8000, assembled after previous
-Avec=, ;ROM and relocation after previous

; thisis the same as no option at all
-B

This option is used to create a file with the same root name as the output file and with the extension ".BNK'. Thisfile is
similar to the map file and contains bank information.

-C
This option is used to specify the relocation address and the ROM address of the predefined CODE section. The format is:
-CIXXXX][IXXXXT]

which is similar to the -A option without the section name.

EXAMPLE:
-C8000 ;ROM and relocation both at 8000
-C18000,8000 ;in ROM at 8000, assembled as though at 18000
-C18000, ;in ROM after previous section (0 for code)
-C,8000 :;in ROM at 8000, assembled at O
-C, :ROM and relocation both O

;thisisthe same as no option at all

© The Western Design Center, Inc. 2005 35



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
-D
This option is used to specify the relocation address and the ROM address of the predefined DATA section. The format is:
D[XXXX][,[XXXX]]

which issimilar to the -A option without the section name.

EXAMPLE:
-D8000 :ROM and relocation both at 8000
-D18000,8000 ;in ROM at 8000, assembled at 18000
-D18000, :;in ROM after KDATA, assembled at 18000
-D,8000 ;in ROM at 8000, assembled after KDATA
-D, :ROM and relocation both after KDATA

; thisis the same as no option at all

-E

This option is used to create a file with the same root name as the output file and with the extension ".ERR'. This file
contains any warnings or error messages generated during the link.

-F

This option causes the linker to continue reading options and file names from a file. When done, it then continues reading
arguments from the command line. The name of the file follows the option -F. Lines beginning with a “# character are
ignored. For example, the following command links PROG.OBJ with SUB1.0OBJ, ..., SUB4.0BJ, and TC.LIB. It reads some
arguments from the file PROG.LNK:

WDCLN PROG.OBJ-F PROG.LNK TC.LIB
where PROG.LNK contains;

-O PROG.OUT

SUB1.0BJ SUB2.0BJ

SUB3.0BJ
SUB4.0BJ

WARNING: Thereisa limit of 5000 files for the source level information contained in reading
filenamesfrom afile (Includefiles are counted in thistotal).

-G

This option tell the linker to generate source level information. When specified by itself with no additional symbol style
option, the WDC symbol file format is generated. Otherwise, if the -SN Extended MicroTek symbol format option is
specified, the source information is added as specia records.

© The Western Design Center, Inc. 2005 36



TheWestern Design Center, Inc.

September 2005

H

Assembler/Linker v3.49

This option is used to select the format of the hex output file. Four formats are currently supported. The following table
shows the name of the format, the option used to generate it, the default file extension generated for the output file and the

addressfield size.

Option
-HB
-HI
-HIE
-HM19
-HM28
-HM37
-HN
-HT
-HZ

Binary format:

File
.BIN
HEX
HEX
.S19
.S28
.S37
ISX
.TEK
.BIN

Size
16
32
16
24
32
24
16
24

Format

Straight Binary
Intel Hex
Extended Intel Hex
Motorola S19
Motorola S28
Motorola S37
Nintendo Binary
Tektronix Hex
WDC Binary

The following binary format is generated if *-hz' is specified to the linker:

Initial byte'Z' as signature.
Then for each block:

3 byte address

3 byte length

length bytes of data

Thefinal block has an address and length of O.

The default is Motorola S19.

-J

This option causes the module info to be placed in alphabetical order.
By default, module info is sorted by section.

-K

This option is used to specify the relocation address and the ROM address of the predefined KDATA section. Theformat is:

AK[XXXX][LIXXXX]]

which is similar to the -A option without the section name.

EXAMPLE:
-K8000

-K 18000,8000
-K18000,
-K,8000

K,

:ROM and relocation both at 8000

:;in ROM at 8000, assembled at 18000

;in ROM after CODE, assembled at 18000
;in ROM at 8000, assembled after CODE
:ROM and relocation both after CODE
;thisisthe same as no option at all

© The Western Design Center, Inc. 2005

37



TheWestern Design Center, Inc.
September 2005 Assembler/Linker v3.49
-L

This option takes the following characters and adds .LIB to form the name of the library. The default library directories
specified in the WDC_L I B environment variable are then searched for the fully defined file name.
For example, the command:

WDCLN -J-LCL
will look for the file LCL.LIB.

Note: The order of the libraries is important! The linker will pull in the functions it needs from the first library it sees. For
example, the following command:

WDCLN Sample.obj -LMS-LCS

will pull in the scanf and printf functions from the floating point library asit is specified first. Thiswill result in larger code
sizel Therefore,

If you are using floating point math, put -LMS before —LCS so the proper functions are included.
If you are NOT using floating point math, do not include—LMS on the command line, or put it after -LCS.

Note: For the W65C02, use c.lib and/or m.lib. For the W65C816, use coc.lib, col.lib, com.lib, ms.lib, mm.lib, mc.lib, ml.lib,
cs.lib, cm.lib, cc.lib, and/or cl.lib.

-M

This option is used to select a special machine mode. Currently, the only available machine modes are -MN, -M N80 and -
MN21 which stand for Nintendo, slow and fast, and Nintendo Mode 21 respectively.

-N

If this option is specified, the linker will not place any symbols defined in a.QCK file into the symbal file. Thisis useful if
the .QCK file is created from a large amount of data whose symbols are not required after linking. The symbol file can be
significantly smaller if the data symbols are discarded.

-O

Option -O can be used to specify the name of the file to which the linker is to write the executable program. The name of
this file is in the parameter that follows -O. For example, the following command writes the executable program to the file
PROG.OUT:

WDCLN -O PROG.OUT PROG.OBJTC.LIB

If this option is not used, the linker derives the name of the executable file from that of the first input file with the extension
changed to reflect the type of hex file being generated.

P

This option sets the fill characters in the hex output file. The default, (no -P), does not add any fill characters to the hex
output file. If this option is specified as —PFF, it will fill in the blank areas of the hex output file with $FF s (al 1's). If this
option is specified as—P0OO, it will fill in the blank areas of the hex output file with zeros, (0's).

Q

As the linker reads files and modules, it displays the name of each module. Each subsequent module name overwrites the
preceding name. This option tells the linker not to display module names.

© The Western Design Center, Inc. 2005 38



TheWestern Design Center, Inc.
September 2005 Assembler/Linker v3.49
-S

This option controls the generation of symbol file information. By default, no symbol file is generated. When this option is
specified, asymbol file is generated which can be used to aid in debugging the application.

The following table shows the options and the formats generated.

Option Format

-S2 2500AD symbol format

-SM MicroTek symbol format

-SN Extended MicroTek symbol format
-SQ Quick link object file

-SZ WDC symbol format

The linker supports an extension to the Extended MicroTek symbol file format.

The linker generates the following additional symbol records
if the'-g' (source level info) option and '-sn' options have been selected.

0-9 Standard MicroTek symbol type - global symbols

50-59 Standard MicroTek symbol type - local symbols

101 Single character name that is the status Register as specified by LONGA/LONGI directives. In other words,
if LONGA ON is specified a 101 record will be generated with a $20 as the ps value.

102 A two character name (low,high) that is the line number associated with this address.

103 The name is the source file name associated with the object module.

120+N A zero length name with the address being the starting address for section N. Section 1 is CODE, section 2
isDATA, section 3is UDATA. Other sections can probably be ignored unless you want to handle them.

150+N A zero length name with the address being the ending address fot section N.

The accompanying program source, “'nsym.c', will display the records of this symbol file format.
-T

This option instructs the linker to generate a text map file with the extension .MAP. The final address of each symbol is
listed.

-U
This option is used to specify the relocation address and the ROM address of the predefined UDATA section. Theformat is:
~UXX XXX XX X]]

which is similar to the -A option without the section name. The UDATA section isalittle different since it never needs to be
in the ROM at all sinceit contains uninitialized data.

EXAMPLE:
-U8000 :ROM and relocation both at 8000
-U18000,8000 ;in ROM at 8000, assembled at 18000
-U18000, :in ROM after DATA, assembled at 18000
-U,8000 :;in ROM at 8000, assembled after DATA
-U, :ROM and relocation both after DATA

; thisisthe same as no option at all

© The Western Design Center, Inc. 2005 39



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
-V

This option displays additional information to the screen giving the names of variables and their locations.
Note: If the linker output is longer than the screen will alow, the linker output can be redirected to a file and viewed in its
entirety. Y ou can redirect the linker output to afile by adding >> filename.txt to the end of the linker line.

For example:
WDCLN -¢1000 —sz —hz —g -t —v —0 exmpl 1.bin t0s.obj exmpl 1.0bj —cs >> output.txt
will redirect the linker output to the file output.txt. The file can then be viewed in atext editor.

-W Note: Thisoption not used after V3.10

This option disables warnings from the linker. The linker will warn if a symbol defined in a program module overrides a
symbol defined in alibrary module. This warning is useful for preventing hard to track down errors such as when the user
defines aroutine called write that overrides the library write routine.

-X

This option directs the linker to use EMM memory mapping to provide additional space for linking programs with large
numbers of symbols. 1t must be the first option specified.

-Z

This option is used to specify the top and bottom address to use when spreading the indicated section of various modules
across multiple banks of memory. Theformat is:

-Zsec=[bottom][,top]

The section specified by sec will be marked for spreading. The default bottom is 0 and the default top is\$1:0000. If no
bottom or top is specified, the default is used. The first byte of the section is specified using the ROM and relative org
directives. The following examples would spread code across the top and bottom 32K of each bank.

EXAMPLE:

-Zcode=8000 ; spread code starting at $8000
-Zcode=,8000 ; spread code from 0 to $8000

The sub-options for —Z are; -Zsec (section name)=, -Z code=, and —Zdata=,.
Quick Linking

Many programs are composed of a large amount of code and data. During development, large portions of the data will
change only rarely. However, even a minute change will require the entire program to be relinked and then downloaded to
the test platform. To alleviate this situation, the linker has the ability to link the data separately and generate a specia object
module which contains only the public symbols defined in the data link. This special object module is then linked with the
remaining object modules each time a change is made. The binary file generated by the first link can be downloaded once
and need not be downloaded again unless the data changes or becomes corrupted. To generate the special object module, the
-SQ optionisused. Instead of generating a symbol file, afile with a.QCK extension is created. Thisfileisin object module
format and contains al the symbols as ABSOLUTE equates. In addition, the -N option can be used when linking a.QCK file
to prevent the symbols defined in the .QCK file from being placed in the symbol file. This can make the symbal file
significantly smaller. For example, the following commands will create two WDC binary files the first of which will contain
data and the second of which will contain the program code.

EXAMPLE:

WDCLN -SQ -HZ -O DATA.BIN DATA1.OBJDATA2.0BJDATA3.0BJ
WDCLN -HZ -N -O CODE.BIN DATA.QCK CODE1.0BJ CODE2.0BJ CODE3.0BJ

© The Western Design Center, Inc. 2005 40



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
Technical Notes

Considerations for when CODE section exceeds bank 00

The linker will generate an error when the size of the CODE section exceeds bank 00 (or bank 01), even if the medium
memory model is used.

To avoid this error, specify that the CODE ROM and relocatable address are the same as the DATA or KDATA ROM
address:

-zCODE —C2000 —K 2000

Since the CODE section is being spread, it will skip over any fixed locations such as DATA and KDATA.

Notes on the starting addressfor each section in thelinker output

In some cases, the linker output will always display the same starting address for each section even if the first instruction is at
the right address. For example:

Linker options:

-C2000
-ztst_conditional_test_on_char
-ztst_conditional_test_on_short
-ztst_function_branch

:Aist_conditional_test_on_char=2000
-Atst_conditional_test_on_short=2000
-Atst_function_branch=2000

-zZKDATA
-K2000
-D200,
-u,
-bs
-hie
-v

-g

-sz

-t

-J

Linker output:

Section tst_function_branch:
00002000 _BEG_TST_FUNCTION_BRANCH
00002620 _ _module_1 <= section start from here!l!l!
00002652 _ _module_2

Since each module of TST_FUNCTION_BRANCH section may be spread over several memory banks, it is not possible to
specify the start address of the section.

e.g.: module_1 may be allocated at $2500 and module_2 after next section because it does not fit into the available spacein
bankO.

© The Western Design Center, Inc. 2005 41



TheWestern Design Center, Inc.

September 2005

Notes on creating a new DATA section

The C_STARTUP code clears the UDATA section. However, it may be required to have another DATA section (e.g.

SAVE DATA) that isNOT initialized (zeroed) at startup.

For example:

#pragma section UDATA=save data

unsigned char my_save data section;

#pragma section CODE=user_code_section

void my_user_code fuction(void) {}

#pragma section CODE=CODE
#pragma section UDATA=UDATA

LINKER COMMAND FILE:

-D200,
-Asave data=,
-C2000

-Zuser_code section

-ZKDATA

<- this section must be declared before any code section

<- Start codein ROM/FLASH

-AKDATA=2000

Linker output:

Sections:

org=00002000
org=00002000
org=00003503
org=00000000
org=00000000
org=00002000

org=0000FFO00
org=0000FFAQO
org=0000FFC4
org=0000FFE4

Section:
CODE
KDATA
DATA
UDATA
save_dat
user_cod

startup

hw_optio
ir_vecto
cpu_vect

The new data section must be declared first. The SPREAD option must be used when new sections are declared to keep all of

ORG:

002000
002000
000200
00025E
0003F0
002000

OOFFO00
OOFFAO
OOFFC4
OOFFE4

siz=000004DC
siz=00000103
si1z=0000005E
siz=00000192
siz=00000003
siz=00000028

siz=00000044
siz=00000024
siz=00000020
siz=0000001C

ROM ORG:
002000
002000
003503

002000

OOFFO00
OOFFAO
OOFFC4
OOFFE4

<- Set SPREAD option to keep user_code_section in the same memory bank
-Auser_code_section=2000<- Set same start addr. of CODE section
<- set SPREAD option for KDATA

<- set same start addr.

end=000024DC
end=00003503
end=00003561
end=00000000
end=00000000
end=00002504

end=0000FF44
end=0000FFC4
end=0000FFE4
end=00010000

SIZE:
4DCH
103H

5EH
192H
3H
28H

1

AAAAAA

44H
24H
20H
1CH

AAAA

them within one memory bank, if they fit.

"CODE*
"KDATA*
"DATA*
"UDATA*
"save_data”

"user_code_section”

"startup”
"hw_options”
"ir_vectors”
"cpu_vectors”

244)
259)
94)
402)
3)
40)

68)
36)
32)
28)

© The Western Design Center, Inc. 2005

Assembler/Linker v3.49



TheWestern Design Center, Inc.
September 2005 Assembler/Linker v3.49

CHAPTER 8 WDCLIB (LIBRARIAN)

WDCLIB is autility program that manipulates libraries of object modules. WDCLIB makes it possible to create alibrary of
commonly used functions. This library can be very efficiently searched and any modules required by the program can be
extracted from the library and placed in the output file.

Note: The standard librariesarein C\WDC_SDS\Lib

Running the Program
The WDCLIB utility is started by giving a command with the format:
WDCLIB [-F ARGFILE] [-ADLSX] LIBRARY [OBJFILE ...]
where LIBRARY isthe full or partial pathname of the library fileto be created, read or modified. Since  several  object
modules may be contained in the same original source file, WDCLIB keeps track of the name of the file that each module

comes from. This allows all the modules associated with a file to be manipulated without tediously typing in the name of
each module. Options may be specified individualy or together.

Option Summary

-A add filesto library

-D delete filesfrom library

-F specify file with arguments
-L list filesin library

-Slist dictionary symbols

-X extract files from library

Option Descriptions

-A
This option tells WDCLIB to add the specified files to the library. The symbol dictionary is updated to include the names of
symbols defined in the object modules in the files. If none of the options -A, -D, or -X are given, the default is to assume
option -A. To create alibrary from a set of object files, use the command:

WDCLIB -A MYLIB.LIB LIBSRC1.0BJLIBSRC2.0BJLIBSRC3.0BJ

which will create a library file called MYLIB.LIB and add all the modules from the three object files. I1f MYLIB.LIB aready
existed, the modules from the three object files will be added to the library.

-D

The modules in the library that originally came from the named files are deleted from the library. Modules must be deleted
before being replaced with new ones.

© The Western Design Center, Inc. 2005 43



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
The following example shows how to remove the modul es associated with an object file.
WDCLIB -D MYLIB.LIB LIBSRC3.0BJ

All of the modules associated with the file LIBSRC3.0BJ will be deleted from the library.
This example shows how to replace afilein alibrary.

WDCLIB -D MYLIB.LIB LIBSRC2.0BJ
WDCLIB -A MYLIB.LIB LIBSRC2.0BJ

The modules associated with LIBSRC2.0BJ will first be deleted from the library and then added from the new version of the
file. The following options display information about the library file after the modification arguments, if any, have been
processed.

‘F

This option must be followed by the name of atext file. The file will be read and arguments will be extracted from the file.
When the end of file is reached, additional arguments are again extracted from the command line. This alows more object
modul es than will fit on the standard command line to be processed at one time.

For example, these commands add al fileswith a™.OBJ extension to thelibrary.

DIR*.0BJ>OBJLIST
WDCLIB -A MYLIB.LIB -F OBJLIST

-L
This option causes a list of the files in the library to be printed. Associated with each file name is a file number. This
number will also appear in the symboal listing which indicates which file contains the module that defines that symbol. This
command will display the names of all files added to alibrary.
WDCLIB -L MYLIB.LIB
This command adds two filesto the library.
WDCLIB -AL MYLIB.LIB LIBSRC1.0BJLIBSRC2.0BJ
After thefiles are added, alist of all thefilesin the library will be printed.
-S
This option causes the dictionary of symbols contained in the library to be printed. The dictionary is printed in alphabetical
order. The number of the file that defined the symbol along with the offset into the library of the module that defined it are
printed beside the symbol name.
-X
The modulesin the library that originally came from the named files are extracted from the library and placed into files with

the same name. After extraction, the modulesin the library are deleted.
The following example extracts two files from alibrary.

WDCLIB -X MYLIB.LIB LIBSRC3.0BJLIBSRC1.0BJ

© The Western Design Center, Inc. 2005 44



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

CHAPTER 9WDCOBJ (EXAMINE OBJECT MODULEYS)

The WDCOBJ utility provides a means to examine object modules created by the WDCXAS assembler. WDCOBJ will print
out the size and type of each section defined in the module, the names of all symbols defined or referenced by the object
module, and if desired, each of the data records in the file. The WDCOBJ utility is of limited usefulness to the typical
programmer and is included for completeness. Options allow control of the information displayed.

Running the Program
The WDCOBJ utility is started by giving a command with the format:
WDCOBJ[-DLRS] PATHNAME[.OBJ]

where PATHNAME is the full or partial pathname of the file that is to be examined. The file may be an object module
produced by the WDC assembler or alibrary file. Options may be specified individually or together.

Option Summary
-D display debug info records

-L suppress data object records
-R display object records
-S suppress symbol information

Option Descriptions
-D

This option causes display of any source debug information records present in the object module. The appropriate options
must have been specified when compiling or assembling for debug information to be present. The default isto NOT display
debug information.

-L

Normally, when the records are displayed, all the data in the record is displayed in hexadecimal format. When option -L is
specified, the datain the record is not displayed. This option is useful for examining the structure of afile without displaying
al theindividua data.

To examine the individual records in an object module but without seeing all of the data bytes, use the command:

WDCOBJ-L PROG.OBJor WDCOBJ-L Prog
-R

This option causes display of each of the individual records in the object module. Information about the object file format is
available on request.
To examine the individual records in an object module, use the command:

WDCOBJ-R PROG.OBJ or WDCOBJ-R Prog
-S

Normally, when WDCOBJ is run, the information for the sections is followed by the symbol information. When the -S
option is specified, the symbol information is suppressed.
The following command displays just the section names and types of al modulesin the file PROG.OBJ:

WDCOBJ-S PROG.OBJ

© The Western Design Center, Inc. 2005 45



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

THISPAGE LEFT INTENTIONALLY BLANK

© The Western Design Center, Inc. 2005 46



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

CHAPTER 10WDCSYM (EXAMINE SYMBOL TABLEYS)

The WDCSYM utility provides a means to examine symbol files generated by the WDCLN linker. WDCSY M will print out
the sections defined in the target program and if desired the line tables, symbol records, auxiliary records and global symbols.
Note: Thisisonly for ZARDOZ symbol files. See the WDCLN manual and the —.g and —sz options.

Running the Program
The WDCSY M utility is started by giving a command with the format:
WDCSYM [-ALS] PATHNAME[.SY M]

where PATHNAME is the full or partial pathname of the file that is to be examined. The file must be a symbol file produced
by the WDC linker using the -HZ and -G options. Options may be specified individually or together.

Creating a batch file with the following line: WDCSY M filename.sym>>sym.txt, will create the file sym.txt that can be read
in Notepad.

Option Summary

-A display auxiliary table
-L display line tables
-S display global symbols

Option Descriptions
-A

This option causes the display of the auxiliary table. This table contains typing information, array sizes and other
information used in source level debugging. Only onetableis present in the symbol file and is referenced by all sections and
modules.

-L
This option causes the display of the line information data for each section in the symbol file.
-S

This option causes the display of all global symbol records in the symbol file. Normally, the global symbol records are
suppressed.
The following command displays the section information, and symbols for all sections and the global symbols as well.

WDCSYM -SPROG.SYM

The basic structure of the fileis outlined as follows:

File Header
Module 1 Information
Section 1 Information

Section N Information

Line Record Information

Symbol Record Information
Module 2 Information

© The Western Design Center, Inc. 2005 47



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
I.\)I.odule N Information

Global Symbol Records
String Table

Auxiliary Record Table
Source File Information
End of file

Note: See Chapter 6 of the Simulator/Debugger manual for more information.

© The Western Design Center, Inc. 2005 48



TheWestern Design Center, Inc.

September 2005

Standard Instructions

Thefollowing isalist of al the standard W65C816 opcode mnemonics.

adc
bcs
bne
brl
cld
cop
dex
inx
jsl
[dy
nop
per
phk
pla
plx
ror
sbc
sep
sty
tcd
tsb
txs
wal

Alternate I nstructions

Thefollowing is atable of less common aliases for standard instructions.

Alias

bge
blt
cpa
dea
ina
ret
swa
tad
tas
tda
tsa
xor

CHAPTER 11 Assembly Opcodes

and
beq
bpl
bvc
cli
cpX
dey
iny
jsr
Isr
ora
pha
php
plb
ply
rt

Standard

bcs
bcc
cmp A
dec A
inc A
rts
xba
tcd
tcs
tdc
tsc
eor

adl
bit
bra
bvs
clv
cpy
eor
jml
Ida
mvn
pea
phb
phx
pld
rep
rtl

bcc
bmi
brk
clc
cmp
dec
inc
jmp
ldx
mvp
pei
phd
phy
pip
rol
rts
Sei
Stx
tay
trb
txa
tyX
xce

Assembler/Linker v3.49

© The Western Design Center, Inc. 2005

49



TheWestern Design Center, Inc.
September 2005

Assembler/Linker v3.49
W65C02S I nstructions

The following instructions are enabled when CHIP W65CO02 is enabled.

bbr0 bbrl bbr2 bbr3
bbr4 bbr5 bbré bbr7
bbsD bbsl bbs2 bbs3
bbs4 bbs5 bbs6 bbs7
rmbO rmbl rmb2 rmb3
rmb4 rmb5 rmb6 rmb7
smb0 smbl smb2 smb3
smb4 smb5 smb6 smb7

Addressing M odes
This section provides a brief description of the 24 allowable addressing modes.

IMMEDIATE OPCODE VALUE
The operand is the second byte in 8-bit mode or the second and third byte in 16-bit mode.

ABSOLUTE OPCODE ADDR
OPCODE IADDR

The operand is an address composed of the Data Bank register as the high-order 8 bits of a 24-bit address. The low-order 16
bits come from the second and third bytes of the instruction.

ABSOLUTE LONG OPCODE >ADDR
The operand is a 24-bit address that comes from the next three bytes of the instruction.
DIRECT OPCODE <ADDR
The operand is an addressin Bank 0 that comes from adding the second byte of the instruction to the Direct Page register.

ACCUMULATOR OPCODE A

The operand is the accumulator. The effect is 8-bit if the status register M bit is 1 otherwise the effect is 16-bit. This
instruction is always one byte.

IMPLIED OPCODE
There is no operand for this addressing mode. The instruction is always one byte.

DIRECT INDIRECT INDEXED OPCODE (<ADDR),Y

The second byte of the instruction is added to the Direct Page register to determine the location in Bank O of a 16-bit address
that is combined with the Data Bank register to form a 24-bit address. The Y index register is added to this address to form
thefinal address. If the statusregister X bit isa 1, then 8 bits of the Y register are added otherwise 16 bits are added.

© The Western Design Center, Inc. 2005 50



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

DIRECT INDIRECT LONG INDEXED OPCODE [<ADDR],Y
The second byte of the instruction is added to the Direct Page register to determine the location in Bank O of a 24-bit address.
The Y index register is added to this address to form the final address. If the status register X bit isa 1, then 8 bits of the Y
register are added otherwise 16 bits are added.

DIRECT INDEXED INDIRECT OPCODE (<ADDR,X)

The second byte of the instruction is added to the sum of the X register and the Direct Page register to form the Bank O
address of a 16-bit address that is combined with the Data Bank register to form a 24-bit address.

DIRECT INDEXED WITH X OPCODE <ADDR,X

The second byte of the instruction is added to the sum of the X register and the Direct Page register to form an address in
Bank 0.

DIRECT INDEXED WITH Y OPCODE <ADDR,Y

The second byte of the instruction is added to the sum of the Y register and the Direct Page register to form an address in
Bank 0.

ABSOLUTE INDEXED WITH X OPCODE ADDR X
OPCODE JADDR X

The second and third bytes of the instruction are combined with the Data Bank register to form a 24-bit address. The X
register is added to form the final 24-bit address.

ABSOLUTE LONG INDEXED WITH X OPCODE >ADDR,X

The second, third and fourth bytes of the instruction form a 24-bit address which is added to the X register to form the final
address.

ABSOLUTE INDEXED WITH Y OPCODE ADDR,Y
OPCODE IADDR,Y

The second and third bytes of the instruction are combined with the Data Bank register to form a 24-bit address. The Y
register is added to form the final 24-bit address.

PROGRAM COUNTER RELATIVE BRANCH LABEL
The second byte of the instruction is added to the value of the program counter after the program counter has been updated to

point at the next instruction. The byte is considered a signed quantity. The resulting address is used as the new program
counter. The Program Bank register is not affected.

© The Western Design Center, Inc. 2005 51



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

PROGRAM COUNTER RELATIVE LONG BRL  LABEL
PER  LABEL

The second and third bytes of the instruction are added to the value of the program counter after the program counter has
been updated to point at the next instruction. The word is considered a signed quantity. The resulting address is used as the
new program counter for the BRL instruction. The Program Bank register is not affected. With the PER instruction, the
resulting addressis pushed onto the stack.

ABSOLUTE INDIRECT OPCODE (ADDR)
OPCODE (| ADDR)

The second and third bytes of the instruction form a 16-bit addressin Bank 0. The 16-hits at the specified address are |oaded
into the Program Counter. If the opcode is IML, the third byte at the address in Bank O is loaded into the Program Bank
register.

DIRECT INDIRECT OPCODE (<ADDR)

The second byte of the instruction is added to the Direct Page register to form an address in Bank 0. The 16-bit value at the
Bank 0 addressis combined with the Data Bank register to form a 24-bit address.

DIRECT INDIRECT LONG OPCODE [<ADDR]

The second byte of the instruction is added to the Direct Page register to form an address in Bank 0. The 24-bit value at the
Bank 0 addressis used as the final address.

ABSOLUTE INDEXED INDIRECT OPCODE (ADDRX)
OPCODE (]| ADDRX)

The second and third bytes of the instruction form a 16-hit address that is added to the X register to form a 16-bit address in
Bank 0. The 16-bit address at the specified Bank 0 location is loaded into the Program Counter. The Program Bank register
is not changed.

STACK OPCODE

Stack addressing refersto all instructions that push or pull data on or off the stack. It isaspecial case of IMPLIED.
STACK RELATIVE OPCODE <ADDR,S

The second byte of the instruction is added to the stack pointer to form a 16-bit addressin Bank O.
STACK RELATIVE INDIRECT INDEXED OPCODE (<ADDR,S),Y

The second byte of the instruction is added to the stack pointer to form a 16-bit address in Bank 0. The 16-bit value at the
address is combined with the Data Bank register to form a 24-bit address that is added to the Y register to form the final 24-
bit address.

BLOCK MVN DST,SRC
MVP DST,SRC

The second byte of the instruction is used as the destination bank number with the Y index register being the low-order 16
bits. The third byte is the source bank number with the X index register providing the low-order 16 bits.

© The Western Design Center, Inc. 2005 52



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Special Cases

A few of the 65816 opcodes will accept more than one form of address. Each of the instructions and the alternates is listed
below.

MVN #src #dst
MVN src,dst
MVP #src #Hdst
MVP src,dst
PEA absolute
PEA #value
PEI (direct)
PEI direct

PEI #direct
PER |abel

PER #offset
JSR > address
JSL > address
JML > address
IMP > address
ML (absolute)
JMP [absolute]

© The Western Design Center, Inc. 2005 53



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

THISPAGE LEFT INTENTIONALLY BLANK

© The Western Design Center, Inc. 2005 54



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

CHAPTER 12 Assembly Directives
Fileand Symbol Control

These directives control the organization of files, modules, sections and symbols. See the overview for a more detailed
discussion of modules and sections.

WARNING: When using long paths with spaces embedded in the path name, enclose the name in quotes! For
example, APPEND “F\WDC\SAM S PROJECTSIMACROS.INC”

APPEND [LABEL] APPEND FILENAME

This directive causes the assembler to stop reading the current file and to read lines from the specified file instead. The
original file is not returned to. Thus, this is usually the last statement in afile since any following it are ignored. The line
number counter is not reset. Filenames are read up to a space, tab, semi-colon or end of line. Filenames may aso be
enclosed in single or double quotes.

EXAMPLE:

APPEND c:\src\asmend.asm ;use the common ending

INCLUDE [LABEL] INCLUDE FILENAME

This directive reads assembly language statements from the specified file. When the end of the file is reached, or an END
directive is parsed, the assembler continues with the line following the INCLUDE directive. The line numbers are started
again at 1 with each file that is included. Filenames are read up to a space, tab, semi-colon or end of line. Filenames may
also be enclosed in single or double quotes.

EXAMPLE:

INCLUDE c:\src\macros.inc :load macros

INSERT [LABEL] INSERT FILENAME

This directive reads a binary image from the specified file and inserts it into the object module at the current program
counter. The assembler continues with the line following the INSERT directive. Filenames are read up to a space, tab,
semi-colon or end of line. Filenames may also be enclosed in single or double quotes. When searching for files, the path
specified by the -1 option is used.

EXAMPLE:

INSERT c:\src\sounds.inc ; insert sound data

© The Western Design Center, Inc. 2005 55



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

END [LABEL] END [VALUE]

When the END directive is encountered in a source file, no further lines are read. When the END directive is
encountered in an included file, the file is closed and the next lineis read from the previous include or source file. If VALUE
is specified it is used as the starting address of the program if the output format has a record type that supportsit.

EXAMPLE:

MAIN: RTS ; avery short program
END ; the end of the program

| can put anything here because the assembler never readsiit.

EXIT [LABEL] EXIT TEXT

This directive displays the message to the output terminal and then causes the assembler to exit. Thisistypically used in a
conditional when some event triggersit.

EXAMPLE:
NUMSYMS SET NUMSYMS+1 ;add one more symbol
IF NUMSY M S>500 ;too many symbols?
EXIT  Symbol table overflow!
ENDIF
MODULE MODULE MODNAME
ENDMOD ENDMOD

These directives are used to mark the beginning and end of an independent module of a program. Each module acts like an
independent file with a new symbol table. Modules are used almost exclusively when creating libraries of functions. They

allow multiple functions to be defined in the same source file. See the overview for a more detailed description of how
modules are used.

EXAMPLE:
MODULE COPYSTR ;function to copy a string
;function body
ENDMOD ;end of module

© The Western Design Center, Inc. 2005 56



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

SECTION LABEL SECTION OPTIONS

This directive is used to define a new section type. There are five pre-defined sections with the names PAGEO, CODE,
KDATA, DATA, and UDATA. CODE is the default. See CHAPTER 3 for a discussion of these sections. Up to 250
sections may be defined. The name of the section is taken from the LABEL. Additiona options may be specified to
determine the type of section being defined.

OFFSET ADDR This option makes the section an ABSOLUTE section which starts at the specified ADDR. It is equivaent
to defining a section followed by an ORG directive.

INDIRECT ADDR This is similar to OFFSET, but tells the linker to assemble the code at the specified ADDR, but to
actually place it somewhere else. Thisis used when generating datainto ROM that will be copied to another address.

REF_ONLY This option indicates that any labels in the section are to be recorded at the correct offset, but no actual datais
generated. Thisis useful for creating templates or when uninitialized data is being created. Both the PAGEO and UDATA
sections default to being REF_ONLY. Once a section has been defined, its name is added to the opcode table. Thus, the
same name can be used as a symbol as well. To add code or data to a section, the name of the section can be used as a
directive. The SECTION definition automatically causes a switch to the new section.

EXAMPLE:
MYDATA SECTION OFFSET $10000 ;define section in bank 1
MYDATA: DB $1 ;save signature byte
ENDS ;back to previous section
LDA >MYDATA ;get signature byte
CMP #1
MYDATA ;switch to MYDATA again
RMB 20 ;Save some space
DB 2 ;set number of widgets
ENDS ;back to previous section
ENDS ENDS

This directive is used to undo the effect of the previous section changing directive. Sections are nested, with each section
name directive nesting a bit deeper. Sections can be nested up to 500 deep. Each ENDS directive ““un-nests' one level.

EXAMPLE:
NOP :start out in CODE section
DATA :switch to DATA
DB 1
UDATA :switch to UDATA
RMB 3
ENDS :back to DATA
DB 2
ENDS :back to CODE
RTS

© The Western Design Center, Inc. 2005 57



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
ORG [LABEL] ORG OFFSET
ORIGIN [LABEL] ORIGIN OFFSET

This directive does two things. First, it marks the current section as absolute. Second, it sets the program counter to the
specified value. All subsequent labels are defined with an absolute address. When switching sections, the ORG statement
should follow the statement that switches sections.

EXAMPLE:
DATA :switch to the data section
ORG $200 ;set pc to hex 200
CODE
ORIGIN $12000 ;set code pc to 01:2000H
EQU LABEL EQU EXPRESSION
EQUAL LABEL EQU EXPRESSION

These directives set the label to the value specified by the expression. The expression may contain only one level of indirect
reference. The label hastype ABSOLUTE unless equated with an expression containing a relocatable label.

EXAMPLE:
LAB1 EQU 100 ;absolute |abel
LAB2 EQUAL MAIN+4 ;relocatable if MAIN isrelocatable
GEQU LABEL GEQU ABSOLUTE

This directive is similar to the EQU directive with two differences. First, the expression must be an absolute numerical
value. No forward reference is alowed. The second difference only affects programs which use the MODULE directive.
Symbols defined by the normal EQU directive are cleared at the beginning of each module. Symbols defined using the
GEQU directive are retained across modules.

EXAMPLE:
LAB1 GEQU 100 ;absolute [abel
LAB2 GEQU LAB1+4 ;also absolute
DEFL LABEL DEFL EXPRESSION

© The Western Design Center, Inc. 2005 58



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
SET LABEL SET EXPRESSION
VAR LABEL VAR EXPRESSION

These directives are similar to the EQU directive in that they set alabel to a particular value. However, with these directives,
the value can be changed with alater directive. The argument must be an absolute expression.

EXAMPLE:
CNT DEFL 1 ;initialize counter
CNT  SET CNT+1 ;increment counter by 1
CNT VAR EDATA-BDATA ;difference is always absolute
EXTERN [LABEL] EXTERN LABEL[,LABEL...]
EXTERNAL [LABEL] EXTERNAL LABEL[,LABEL...]
XREF [LABEL] XREF LABEL[,LABEL...]

These directives declare the specified symbol(s) to be external to the current file. Any symbols which are not defined in the
current file or module and that need to be referenced must be marked external otherwise an undefined symbol error will be
given at the end of Pass 1. A single symbol name may be specified, or m

ultiple symbols may be specified separated by commas.

EXAMPLE:
EXTERN copystr ;say copystr defined elsewhere
LDA #ADDR1 ;get source address
LDX #ADDR2 ;get destination address
JSL copystring ;copy the string
EXTERN Page0 |IO_UART ;give |O_UART a Page0 attribute
EXTERNS [LABEL] EXTERNS ON
[LABEL] EXTERNS OFF

When this directive is turned on, al labels that are undefined are automatically made public without using the EXTERN,
EXTERNAL or XREF directives. Thisdirective can be used to force al undefined symbols to be external without having to
do so on anindividual basis. The linker will then attempt to find matches for the symbols in other object modules.

The default is OFF.

EXAMPLE:
Ida LAB1 ;an undefined label
EXTERNS ON ;turn on automatic extern
Ida LAB2 ;undefined, but external

© The Western Design Center, Inc. 2005 59



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
GLOBAL [LABEL] GLOBAL LABEL[,LABEL...]
PUBLIC [LABEL] PUBLIC LABEL[,LABEL...]

XDEF [LABEL] XDEF LABEL[,LABEL...]

These directives are similar to the previous set except that these indicate symbols that are defined in the current file and are

referenced by a different file. If alabel is not declared global, then it will not be listed in the object module and can not be
found by the linker.

EXAMPLE:
PUBLIC copystr ;tell assembler other files can call
copystr STA <1 ;save in direct page
STX <3 ;save second pointer
loop LDA (<1) ;get byte
STA (<3) ;copy it
BEQ done ;loop if non-zero
INC <1 ;bump address
INC <3
BRA loop ;continue till done
GLOBALS [LABEL] GLOBALS ON
[LABEL] GLOBALS OFF

When this directive is turned on, all labels that are defined are automatically made global without using the GLOBAL,
PUBLIC or XDEF directives. Thisincludes any symbols defined using EQU or SET directives. This may be a useful thing
to do when debugging a program since the linker can generate a symbol table with all symbol addresses. Only global
symbols are passed to the linker, so placing this directive as the first thing in the source file will make all labels global and
cause them to appear in the symbol table.

The default is OFF.

EXAMPLE:
LAB1: ;not aglobal symbol
GLOBALS ON ;turn on al globals
LAB2: ;this symbol IS global
MESSAGE [LABEL] MESSAGE TEXT
M ESSG [LABEL] MESSG TEXT

This directive displays the indicated message text during Pass 2 of the assembly process. One use would be inside of

conditionals to indicate that a certain set of conditions exist. Another use is as a reminder of what options to use when
linking.

EXAMPLE:

IF NUM>10

MESSAGE More than 10 widgets!
ENDIF

MESSG Don't forget to use -HM 28!

© The Western Design Center, Inc. 2005 60



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

EFUNC EFUNC

This directive serves only as a placeholder to mark the end of a C function generated by the compiler. It is used by the post-
pass peephole optimizer that works on a single function at atime.

EXAMPLE:

EFUNC

INCDEBUG [LABEL] INCDEBUG ON
[LABEL] INCDEBUG OFF

When the assembler is directed to generate source level information, it does so for the original source file and any included
source files. Since many included source files contain only equates and symbol definitions, source information isn't very
useful and takes additional space and time to produce. When this directive is turned on, source information is generated for
included files. If INCDEBUG is off, no source information is produced. This directive cannot be nested. The default is
ON.

EXAMPLE:
INCLUDE "jlinc" ;source info for thisfile
INCDEBUG OFF ;turn of f source info
INCLUDE "j2.inc" ;no source info for thisfile

Parsing Control
The directivesin this section control how the opcodes and opcode arguments are parsed.

CASE [LABEL] CASE ON
[LABEL] CASE OFF

This directive controls whether symbol names are case sensitive or not. If the directiveis ON, all symbol names are recorded
exactly as defined. If the directive is OFF, all symbol names are mapped to lower case. The default isON.

EXAMPLE:
Labl:
BRA LAB1 ;generates an error
CASE OFF
Lab2:
BRA LAB2 ;nO error generated
CHIP
[LABEL] CHIP 65C02
[LABEL] CHIP W65C02S
[LABEL] CHIP 65816

© The Western Design Center, Inc. 2005 61



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

This directive controls which set of opcodes and addressing modes is to be used. The valid values for type are 65C02,
W6E5C02S, and 65816. The W65C02S option enables the extra BBRx, BBSx, RMBx and SMBXx instructions. The default
for WDCB16AS is 65816. The default for WDCO2AS is W65C02S. The Rockwell version of the W65C02S does not
support the WAI and STP instructions.

EXAMPLE:
CHIP 65816 ;start in native mode
SEC ;set carry for emulation mode
XCE ;go into emulation mode
CHIP  65C02 ;don't want to use any 65816 codes
CHKIMMED [LABEL] CHKIMMED ON
[LABEL] CHKIMMED OFF

This directive controls whether an error is generated when an immediate load to aregister is larger than will fit in the register.
Legal values range from -127 to 255 for a short register and -32767 to 65535 for along register. The default is OFF, which
will not generate an error.

EXAMPLE:
LONGA OFF
CHKIMMED  OFF
LDA #$101 ; NOo error generated
CHKIMMED ON
LDA #$101 ; generates an error
COMMENT [LABEL] COMMENT CHAR

This directive is used to specify a block of lines as all being comments. The character argument of the COMMENT
directive is used as an end marker. Lines are treated as comments until a line is encountered which contains the end marker
character.

EXAMPLE:

COMMENT #
these lines are

all just comments
thisisthelast line #

© The Western Design Center, Inc. 2005 62



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
DBREG [LABEL] DBREG [VALUE]

This directive is used to indicate to the assembler the run-time value of the Data Bank register. Normally, when the DBREG
directive has been used, if a symbol is referenced without a specific addressing mode, the assembler will generate long
absolute reference. When this directive is used, the assembler can check for references to absolute symbols that are defined
in the indicated data bank and generate a two-byte absolute reference instead.

EXAMPLE:
A EQU $1:0000
B EQU $2:0000
DBREG $2
LDA A ;long absolute address used
LDA B ;absolute address used
DPAGE [LABEL] DPAGE [VALUE]

This directive is used to indicate to the assembler the run-time value of the Direct Page register. Normally, when the
DPAGE directive has been used, if asymbol is referenced without a specific addressing mode, the assembler will generate an
absolute reference. When this directive is used, the assembler can check for references to absolute symbols that are defined
in the current direct page and generate a one-byte direct page reference instead.

EXAMPLE:

A EQU $24

B EQU $34
DPAGE $30
LDA A ;absolute address used
LDA B ;direct page address used

LONGA [LABEL] LONGA ON (Default)

[LABEL] LONGA OFF

This directive is used to indicate to the assembler the size of the accumulator. This tells the assembler to generate 16 bit
versus 8 bit immediate values when the accumulator is involved. The ONLY effect this directive has concerns immediate
operands. The X and Y registers are not affected.

The default is ON.

EXAMPLE:
LONGA ON
LDA #0 ;thiswill generate two bytes of zero
LONGA OFF
LDA #0 ;thiswill generate one byte of zero

© The Western Design Center, Inc. 2005 63



TheWestern Design Center, Inc.
September 2005

Assembler/Linker v3.49

LONGI [LABEL] LONGI ON  (Default)
[LABEL] LONGI OFF

This directive is used to indicate to the assembler the size of the X and Y index registers. Thistells the assembler to generate
16 hit versus 8 hit immediate values when these registers are involved. The ONLY affect this directive has concerns
immediate operands. The accumulator is not affected.

The default is ON.

EXAMPLE:
LONGI ON
LDX #0 ;thiswill generate two bytes of zero
LONGI OFF
LDY #0 ;thiswill generate one byte of zero
RADIX [LABEL] RADIX NUM
[LABEL] RADIX CHAR

This directive changes the default radix for numbers in the operand field of instructions and directives. The default radix is
decimal, so numbers that do not have a binary, octal or hexadecimal qualifier will be interpreted as decimal numbers. For
example, the number “10' can be either 2, 8, 10, or 16 depending on the default radix. The radix can be specified as the
number of the base, or by the letter that acts as the qualifier for that base. The following table summarizes the possible
choicesfor the RADIX directive.

B 2 Binary

0,Q 8 Octal

D 10 Decimal

H 16 Hexadecimal

Note that the arguments to the RADIX directive are always assumed to be decimal numbers. If the radix is set to
hexadecimal, then it is not possible to indicate binary or decimal numbers by using a trailing B or D since they will be
considered part of the hexadecimal number.

EXAMPLE:
RADIX Q ;octal base
LDA #16 ;octal 16 == decima 14
LDA #16D :decimal 16 == decimal 16
RADIX 16 ;hexadecimal base
LDA #16 :hex 16 == decimal 22
LDA #16D ;:hex 16D == decimal 365
SPACES [LABEL] SPACES ON (Default)
[LABEL] SPACES OFF

This directive determines whether spaces or tabs are allowed between the elements of an instruction operand. 1f SPACES
are OFF, then there can be no blanks or tabs between parts of the operand. Otherwise, the first space or tab will be
interpreted as the end of the operand and the rest of the line will be treated as a comment.

EXAMPLE:

© The Western Design Center, Inc. 2005 64



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
LDA ADDR, X

will beinterpreted asjust:
LDA ADDR

with °, X' as acomment.

If SPACES are ON, then the preceding example would be handled correctly. However, consider the following example:
LDA ADDR/NOTE

With SPACES turned OFF, the */NOTE' would be considered a comment. With SPACES turned ON, the assembler will
assume that the value of "ADDR' should be divided by the value of "NOTE'. When SPACES are ON, you must always use a
semi-colon to begin a comment.

The default is OFF.

LLCHAR [LABEL] LLCHAR CHAR
This directive changes the character that is used to denote atemporary label. The default isthe *? character.
EXAMPLE:
LLCHAR /
/1 NOP
BRA /1

Data Definition Control

These directives are used to place data into the output file. Thefirst few directives are used to affect individual bits of string
operands. Data can be placed as bytes, words, or long words.

BIT? [LABEL] BIT7 ON
[LABEL] BIT7 OFF

When enabled, this directive causes bit 7 of any bytes generated by the ASCI | directive or by string argumentsto the BYTE,
DB, DEFB, FCB and STRING directives. The default is OFF.

EXAMPLE:
DB ‘A ;generates a hex 41 byte
BIT7 ON
DB A ;generates a hex C1 byte
MASK [LABEL] MASK AND_VALUE,OR_VALUE,SUB_VALUE

This directive allows precise bit control over all characters generated by a string argument to a data directive. Each byteina
string argument is bitwise|ANDed with the AND _VALUE and then bitwise-ORed with the OR VALUE and then the
SUB_VALUE issubtracted. The defaultis AND_VALUE = $FF, OR_VALUE = $00, and SUB_VALUE = $00.

EXAMPLE:

© The Western Design Center, Inc. 2005 65



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
DB A ;generates a hex 41 byte
MASK $FF,$20 ;convert to lower case
DB ‘Al ;generates a hex 61 byte (a)
MASK $DF,$00 ;convert to upper case
DB b’ ;generates a hex 42 byte ('B")
MASK $FF,$00,$41 ;convert to alpha offset
DB 'G' ;generates ahex 7
SQUOTE [LABEL] SQUOTE ON
[LABEL] SQUOTE OFF

This directive controls how quoted strings are handled when used as the argument to any of the data definition directives.
When SQUOTE is ON, a single quote character begins the string and the string continues to the end of the line. When
SQUOTE is OFF, asecond single quote is required to terminate the string. The default is OFF.

EXAMPLE:
DB 'thislineis ok’
DB 'thisline will generate an error
SQUOTE ON
DB 'thislineis now ok
TWOCHAR [LABEL] TWOCHAR ON
[LABEL] TWOCHAR OFF

This directive enables certain two character combinations enclosed in quotes to be interpreted as a single non-printable
character. The following table displays the combinations, their hex value and what they represent.

CR $0D Carriage return
HT $09 Horizontal tab
LF $0A Linefeed

NL $00 Null

SP $20 Space

The default is OFF.

EXAMPLE:

; thefollowing line starts with atab
TWOCHAR ON
LINE: DB 'HT''A line,'CR','LF,'NL"
; and ends with a standard line ending
; and aterminating null

© The Western Design Center, Inc. 2005 66



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

ASCII ASCII TEXT
ASC ASC TEXT

This directive storesit's argument in successive bytes of memory. The string starts with the first character that is not a blank
or atab and continuesttill either the end of the line or the | character is encountered. This means that comments will be taken
as part of the string unless the | character is used. The string does not need to be enclosed within ' characters.

EXAMPLE:
ASCII Thisisashort string. ;Not part of string!
ASCII Thisisatest. ;Thisis part of the string too!
FCC [LABEL] FCC CHAR TEXT CHAR

This directive stores it's string argument in successive bytes of memory. This directive allows more control than the ASCI |
directive in beginning and terminating its argument. The first non-blank character found is read and used as the terminating
character of the string. The terminating characters are not considered part of the string.

EXAMPLE:

FCC  /thisisa'string/ ;easy way to include quotes

DATE [LABEL] DATE
This directive outputs the bytes that correspond to the current date in the format:
DDD MMM DD YYYY HH:MM

where DDD is the day of the week, MMM is the month, DD is the day of the month, YYYY isthe year, and HH:MM is the
time in hours and minutes.

EXAMPLE:
FCC /Today'sdateis/ ;first part
DATE ;second part
DB $D,$A,0 ;last part
DA [LABEL] DA [VALUE,..]]

This directive is used to generate a three-byte address. Multiple values may be used, separated by commas. If no values are
specified, three null bytes are generated.

EXAMPLE:
DA ;generate three null bytes
DA 1 ;generate three bytes (1,0,0)
DA LAB ;generate three-byte address

DA LAB1,LAB2 ;generate two three-byte addresses

© The Western Design Center, Inc. 2005 67



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
BYTE [LABEL] BYTE [VALUE,..]
DB [LABEL] DB [VALUE,...]
DEFB [LABEL] DEFB [VALUE,..]
FCB [LABEL] FCB [VALUE,...]
STRING [LABEL] STRING [VALUE,..]]

These directives generate byte data. Multiple values may be used, separated by commas. A vaue may aso be a string of
characters enclosed in either single or double quotes. If no values are specified, one null byte is generated.

EXAMPLE:
BYTE ;generate asingle null byte
DB 1 ;generate a byte with value $01
DEFB 1,abc',0 ;generate 5 bytes
FCB LAB,0 ;generate 2 bytes
STRING 1,2,3 ;worksjust like BY TE
DC [LABEL] DC [VALUE,..]

The DC directive is very similar to the BY TE directives. However, the last byte generated by the DC directive will have the
high order bit set. Thisis often used to indicate the end of a string. If no values are specified for the DC directive, one byte
of $80 is generated.

EXAMPLE:
DC ‘abc’ ;generates $61,$62,$E3
DEFW [LABEL] DEFW [VALUE,...]
DW [LABEL] DW [VALUE,..]]
FDB [LABEL] FDB [VALUE,...]
WORD [LABEL] WORD [VALUE,..]]

These directives generate word data. Each argument generates two byes with the low byte first followed by the high byte.
Multiple values may be used, separated by commas. If no argument is specified, then anull word is generated.

EXAMPLE:
DEFW ;generates $00,$00
DW 1 ;generates $01,$00
FDB 1,2 ;generates $01,$00,$02,$00
DBYTE [LABEL] DBYTE [VALUE,...]

This directive also generates word data. However, this directive stores the high byte first, while the others store the low byte
first. Multiple values may be used, separated by commas. If no argument is specified, then anull word is generated.

© The Western Design Center, Inc. 2005 68



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
EXAMPLE:
DBYTE ;generates $00,$00
DBYTE 1,2 ;generates $00,$01,$00,$02
DL [LABEL] DL [VALUE,..]]
LONG [LABEL] LONG [VALUE,...]
LONGW [LABEL] LONGW [VALUE,..]
LWORD [LABEL] LWORD [VALUE,..]

These directives generate long word data. Values are stored with the low byte first. Multiple values may be used, separated
by commas. If no values are specified, one long word of zero is generated.

EXAMPLE:
DL ;generates $00,$00,$00,$00
LONG 1 ;generates $01,$00,$00,300
LONGW 23 ;generates $02,$00,$00,$00,$03,$00,$00,$00
BLKB [LABEL] BLKB NUM[,VALUE]
BLKW [LABEL] BLKW NUM[,VALUE]
BLKL [LABEL] BLKL NUM[,VALUE]

These directives generate a sequence of constant data. BLKB fills with an eight-bit value, while BLKW uses a sixteen-bit
value and BLKL uses a thirty-two bit value. Values are stored low byte first. If the VALUE is not specified, then zero is
used.

EXAMPLE:
BLKB 3,$FF ;stores 3 bytes of $FF
BLKW 5 ;stores 5 words or 10 bytes of zero
BLKL ;stores 1 long word or 4 zero bytes

© The Western Design Center, Inc. 2005 69



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
DEFS [LABEL] DEFS VALUE
DS [LABEL] DS VALUE
RMB [LABEL] RMB VALUE

These directives reserve the specified number of bytes in the output file. It is equivalent to storing a large number of zeros
but without taking up any space in the object module file. Zeros will be generated by the linker unless the section is
reference only.

EXAMPLE:

DEFS 0 ;don't save any space at al

DS 1 ;save one byte of memory

RMB  100H ;save 256 bytes of memory
DSA [LABEL] DSA VALUE
DSB [LABEL] DSB VALUE
DSL [LABEL] DSL VALUE
DSW [LABEL] DSW VALUE

These directives reserve a specified number of bytesin the output file. It is equivalent to storing a large number of zeros but
without taking up any space in the object module file. Zeros will be generated by the linker unless the section is reference
only. DSB will generate VALUE bytes of space. DSW will generate VALUE times 2 bytes of space. DSA will generate
VALUE times 3 bytes of space. DSL will generate VAL UE times 4 bytes of space.

EXAMPLE:
DSB O ;don't save any space at all
DSwW 1 ;save two bytes of memory
DSA 2 ;save six bytes of memory
DSL 1 ;save four bytes of memory
APWDC
This directive emulates the APW DC directive and isincluded for compatibility.
FLOAT [LABEL] FLOAT [VALUE,...]
DOUBLE [LABEL] DOUBLE [VALUE,...]

These directives generate floating point datain IEEE format. Values are stored with the low byte first. Multiple values may
be used, separated by commas. If no values are specified, one long word of floating point zero is generated.

EXAMPLE:

FLOAT ;generates $00,$00,$00,$00

FLOAT 1 ;generates $00,$00,$80,$3f

DOUBLE ;generates $00,$00,$00,$00,$00,$00,$00,$00
DOUBLE 1 ;generates $00,$00,$00,$00,$00,$00,$f0,$3f

© The Western Design Center, Inc. 2005 70



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Macro Control

Thes directives are used to implement and control MACRO definition and execution. A complete discussion can be found in
CHAPTER5.

MACRO LABEL MACRO [ARGL],...]

This directive is used to define a macro. The LABEL is required and becomes the name of the macro. Any arguments
specified will be substituted within the body of the macro. See CHAPTER 5 for more information. Macro definitions must
end withaM ACEND or ENDM statement.

ENDM ENDM
MACEND MACEND

These directives are used to indicate the end of the macro body. All of the macro body up to the ENDM or MACEND
directive will be saved. When the macro is invoked, execution may actually terminate somewhere within the macro body by
using the MACEXIT directive, Otherwise, execution terminates when the end of the macro body is reached. These
directives can not have a LABEL.

EXAMPLE:
COMP MACRO ARG1,ARG2 ;begin definition
LDA ARG1 ;get first value
CMPARG2 ;compare to second
ENDM ;end definition
ARGCHK [LABEL] ARGCHK ON
[LABEL] ARGCHK OFF

This directive tells the assembler whether or not to give an error if the number of arguments passed to a macro differs from
the number of arguments with which the macro was defined. The default is ON.

EXAMPLE:

TEST MACRO ARG1,ARG2 ;define dummy macro with 2 args
NOP
MACEND
TEST 1,2 ;thisis okay
TEST 1 ;thiswill generate an error
ARGCHK OFF ;turn off checking, default was ON
TEST 1 ;now it won't

© The Western Design Center, Inc. 2005 71



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
MACFIRST [LABEL] MACFIRST ON
[LABEL] MACFIRST OFF

This directive tells the assembler whether or not to generate an error when a macro definition overrides an opcode, directive
or section name. When MACFIRST is OFF, an error is generated. When MACFIRST is ON, a macro can replace an
opcode, directive or section name. The default is OFF.

EXAMPLE:
MACFIRST ON
LIST MACRO ;dummy macro that replaces LIST
MACEND
MACDELIM [LABEL] MACDELIM char"7B
[LABEL] MACDELIM (
[LABEL] MACDELIM [

This directive specifies a delimiter character for macro arguments. Normally, a macro argument consists of all character up
to but not including acomma. If you wish to include a commawithin an argument, you must select an argument delimiter.

This delimiter can be used to begin an argument with it's corresponding character acting as the end of the argument. Multiple
arguments must still be separated with a comma outside of any delimiters. Not all arguments to a macro need be delimited.

EXAMPLE:
MACDELIM { ;set delimitersto {}
COMP {TMP,X}, TMP ;using ,X requires delimiters
MACEXIT [LABEL] MACEXIT

Thisdirective is used to terminate execution of amacro. It can occur anywhere within the macro body.

EXAMPLE:
COPY MACRO ADDR1,ADDR2 ;define COPY macro

IF ARG1=ARG2 ;if same address,
MACEXIT ; No need to copy
ENDIF
LDA ADDR1 ;get value
STA ADDR2 ;copy it
MACEND

© The Western Design Center, Inc. 2005 72



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
IFMA IFMA ARGNUM
IFNMA IFNMA ARGNUM

This conditional must occur within a macro since it tests whether a given argument number exists. When amacro is invoked,
the number of macro arguments passed is counted. This conditional allows the programmer to test if certain arguments are
passed or not and generate the appropriate code. There is a special case if the ARGNUM is zero. Thisis a check to see if
there are any arguments at all.

EXAMPLE:

ADD MACRO SRC1,SRC2,DST ;dst=s1+s2 or s2=s1+s2
CLC
LDA SRC1 ;get value
ADC SRC2 ;add together
IFMA 3 ;do we have DST?
STA DST ;yes, so storeit
ELSE ;No, SO ..
STA SRC2 ; .. putin SRC2
ENDIF
ENDM

DWORDS MACRO VAL,NUM ;define DWORDS macro
IFNMA 0 ;N0 args?
EXIT DWORDS called without arguments!!
ENDC
DEFW VAL,NUM
MACEND

REPT REPT CNT

ENDR ENDR

This directive allows controlled repetition of assembly statements. The argument to the REPT directive specifies the number

of times to repeat the sequence of assembly lines. The sequence is terminated by an ENDR directive. This directive cannot
be nested.

EXAMPLE:
REPT 400
DB $ff
ENDR

© The Western Design Center, Inc. 2005 73



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Conditional Control

The directives in this section are used to perform conditional assembly. Most conditional assembly occurs within macros.
More information on conditionals may be found in CHAPTER 5,which talks about macros and conditionals. All of the
conditionals, the EL SE, ENDC and ENDI F statements can NOT have alabel.

ENDC NDC
ENDIF ENDIF

Statements following a conditional test are parsed or skipped until an ENDC, ENDIF or EL SE is encountered. If an ENDC
or ENDIF is encountered, then the conditional terminates.

COND COND EXPRESSION
IF IF EXPRESSION
IFFALSE IFFALSE EXPRESSION
IFNFALSE IFNFALSE EXPRESSION
IFTRUE IFTRUE EXPRESSION
IFNTRUE IFNTRUE  EXPRESSION
IFZ IFZ EXPRESSION
IFNZ IFNZ EXPRESSION

These directives are all variations on the same theme. Basically, what they do is determine whether the EXPRESSION is
zero or non-zero. |If the expression is non-zero, then the directives IF, IFNZ, COND, IFTRUE and IFNFAL SE will al be
true with the others false. If the expression is zero, then the directives IFZ, IFFAL SE and IFNTRUE will be true with the
first set false.

EXAMPLE:
IFNZ SIZE ;do we have any space to save?
RMB SIZE ;yes, save the space
ENDIF
ELSE ELSE

Statements following a conditional test are parsed or skipped until an ENDC, ENDIF or EL SE is encountered. If an EL SE
is encountered, then the following statements are skipped or parsed until an ENDC or ENDIF is encountered. Any IF ........
ELSE ........ ENDIF setsthat are nested will be skipped as well.

EXAMPLE:
IF SIZE>2 ;bigger than aword?
LONG 0 ;yes, define long value
ELSE
WORD 0 ;no, define word value
ENDIF
NOTE: No spaces allowed in the conditional equation (i.e., size>2)

© The Western Design Center, Inc. 2005 74



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
IFABS IFABS LABEL
IFNABS IFNABS LABEL
IFREL IFREL LABEL
IFNREL IFNREL LABEL

These directives are used to determine if a particular symbol has been defined as absolute or relative. Labels are created two
ways. Thefirst way isto mark the current location of an opcode or directive within asection. If the section within which the
label is located is ABSOLUTE, then the label is ABSOLUTE. If the section is RELATIVE, then the label is RELATIVE.
The second way symbols are defined is through the EQU directive. |If the operand of the EQU directive is ABSOLUTE,
then the label is absolute. If the operand is RELATIVE, then the label is RELATIVE. If the symbol is not in the symbol
table or isundefined, an error is registered.

EXAMPLE:

LAB1 EQU 3 ;constant is ABSOLUTE

LAB2 EQU EDATA-BDATA ;label-label isalways ABSOLUTE

LAB3 EQU BDATA+3 ;if BDATA isRELATIVE, soisLAB3
IFABS LAB1 ;true
IFNABS LAB2 ;false
IFREL LAB3 ;trueif BDATA isRELATIVE
IFNREL LAB1 ;true

|FDEF IFDEF LABEL

IFNDEF IFNDEF LABEL

The symbol table is searched for the specified symbol name. If found, the symbol is considered defined. Symbols are
defined by being used as alabel within a section or by using the EQU or SET directives.

EXAMPLE:

DEBUG EQU 1 ;turn on debugging

IFDEF DEBUG ;is debugging on?

PEA  #MESSAGE ;y€s, so push message

JSR PRINT ;and print it

ENDIF
IFDIFF IFDIFF STR1,STR2
IFNDIFF IFNDIFF STR1,STR2
IFSAME IFSAME STR1,STR2
IFNSAME IFNSAME STR1,STR2

© The Western Design Center, Inc. 2005 75



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

This conditional compares the two strings that are the arguments. Case IS significant, which is to say that "a is not the same
as"A'. The strings may not contain white space unless enclosed with single or double quotes. If the two strings are identical,
then IFSAME and | FNDIFF will be true and I FDIFF and IFNSAME will befalse. Thisdirectiveis most often used inside
of amacro.

EXAMPLE:

CHK MACRO WHICH,VALUE ;define CHK macro
IFSAME NAME,word ;if comparing aword
CMP #VALUE ;just do it
ELSE ;otherwise
SEP #3$20 ;go to 8 bit mode
LONGA OFF ;tell assembler
CMP #VALUE ;do the compare
REP #%$20 :back to 16 bit mode
LONGA ON
ENDIF
MACEND
CHK word,0
CHK byte,4

IFEXT IFEXT LABEL

IFNEXT IFNEXT LABEL

The specified symbol is checked to see if has been marked as external. The directives GLOBAL, PUBLIC, XDEF,
EXTERN, EXTERNAL and XREF are used to mark a symbol as external. The GLOBAL S directive is used to mark all
symbols as external or not. An error is generated if the symbol is not defined.

EXAMPLE:
LAB1:
XREF LAB1
LAB2:
IFEXT LAB1 ;true
IFEXT LAB2 fase
IFNEXT LAB2 ;true
|FPAGEO |FPAGEO LABEL
IFNPAGEO IFNPAGEO LABEL

This conditional is true if the symbol specified has been defined in a PAGEO section. Symbols defined in a PAGEO section
are used for direct page addressing in the 65816 core parts. This conditional provides a mechanism to generate two different
seguences of code depending on whether the symbol is located in the direct page. 1f the symbol is not in the symbol table, an
error is generated. |.e. for the 6502, it means address $00-$FF. For the 65816, it means address $00:0000 - $00: FFFF.

© The Western Design Center, Inc. 2005 76



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
EXAMPLE:
GETVAL MACRO ADDR ;define GETVAL macro
IFPAGEO ADDR ;is symbol direct page?
LDA (ADDR) ;Yes, use it
ELSE
LDA ADDR ;no, SO copy value
STA <0 ; to the direct page
LDA © ;and useit there
ENDIF
MACEND
IFLONGA IFLONGA
IFLONGI IFLONGI
IFSHORTA IFSHORTA
IFSHORTI IFSHORTI
This conditional tests the state generated by the LONGA and L ONGI directives.
EXAMPLE:
IFLONGA
LONGA OFF
ENDIF
IFMATCH IFMATCH STR1,STR2,CNT
This conditional compares two strings specified by STR1 and STR2 for CNT characters.
EXAMPLE:
LOAD MACRO ARG,VAL
IFMATCH ARG,"R0",2
LDA #VAL
ELSE
LDA #>VAL
ENDIF
ENDM
LOAD R0,3

Listing Control
The directivesin this section control the appearance of the listing file generated with the -L option to WDCXAS.
PL [LABEI] PL VALUE
This directive sets the page length for the listing file. The default is 61 but the first PL directive encountered during Pass 1
will be used for the first page.
EXAMPLE:

PL 66 ;set my page length

© The Western Design Center, Inc. 2005 77



TheWestern Design Center, Inc.
September 2005 Assembler/Linker v3.49

PW [LABEI] PW VALUE

This directive sets the page width for the listing file. The default is 78 but the first PW directive encountered during Pass 1
will be used for the first page.

EXAMPLE:

PW 132 ;use awide carriage printer

TOP [LABEL] TOP VALUE

This directive specifies the number of blank lines to be printed at the top of each page before the date and page number line.
The default is O, but the first TOP directive encountered during Pass 1 will override the default for the first page.

EXAMPLE:
TOP 5 ;leave some room at top for binding
HEADING [LABEI] HEADING TEXT
NAM [LABEI] NAM TEXT
TITLE [LABEI] TITLE TEXT
TTL [LABEI] TTL TEXT

This directive is used to indicate the text of the title that is to be printed at the top of each page. If none of these directivesis
ever encountered, then there will be no title line printed. The first of these directives detected during Pass 1 will be saved and
used to title the first page. If you do not wish atitle on the first page, use a an empty HEADING directive before the first
real HEADING directive. Thefirst two blanks or tabs following the directive will be skipped. Any remaining blanks or tabs
will be used to print the title. This allowsthe title to be centered.

EXAMPLE:
HEADING Thisismy heading ; thisis part of it, too!
TITLE Centered heading.
STTL [LABEI] STTL TEXT
SUBTITLE [LABEI] SUBTITLE TEXT

© The Western Design Center, Inc. 2005 78



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
SUBTTL [LABEI] SUBTTL TEXT

This directive is used to indicate the text of the subtitle that is to be printed at the top of each page below the title line. If
none of these directives is ever encountered, then there will be no subtitle line printed. The first of these directives detected
during Pass 1 will be saved and used to subtitle the first page. 1f you do not wish a subtitle on the first page, use a an empty
SUBTITLE directive before the first real SUBTITLE directive. The first two blanks or tabs following the directive will be
skipped. Any remaining blanks or tabs will be used to print the subtitle. This allows the subtitle to be centered.

EXAMPLE:
SUBTITLE Thisis my subtitle ; thisis part of it, too!
STTL Indented subtitle
EJECT [LABEI] EJECT
PAG [LABEI] PAG
PAGE [LABEI] PAGE

This directive outputs a form-feed to the listing file causing a new page to be started.

EXAMPLE:

ENDS ;end of previous section

EJECT ;Start new section on new page

DATA ;Start new section
LIST [LABEI] LIST ON
NLIST [LABEI] LIST OFF
NOLIST [LABEI] NLIST

[LABEI] NOLIST

This directive controls the listing of assembly language statements to the listing file. If the -L option has not been specified,
no listing file is produced. This can be used to suppress the listing of INCLUDE files or other sets of data statements. See
the following INCLIST directive aswell. The default is ON.

EXAMPLE:
NOLIST ;no macrosin listing
INCLUDE MACROS.INC ;parse the macros
LIST ON ;turn listing back on

© The Western Design Center, Inc. 2005 79



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
INCLIST [LABEI] INCLIST ON
[LABEI] INCLIST OFF
This directive controls whether include files are listed in the listing file. The default is ON.
EXAMPLE:
INCLIST OFF ;no macros in listing
INCLUDE MACROS.INC ;parse the macros
;remaining lines will list
ASCLIST [LABEI] ASCLIST ON
[LABEI] ASCLIST OFF

This is one of the directives that control how listings are generated. When a listing is created, the actual bytes that are
generated for instructions and directives are output as hexadecimal values. When ASCLIST is ON, assembly directives that
generate more than four bytes of data will display the additional values on as many additional lines as are necessary. When
ASCLIST isOFF, only thefirst line of valuesis displayed. All valueswill be generated into the output file, only the display
istruncated. The default is ON.

EXAMPLE:
1 00:0000: 61 62 63 64 DB ‘abcdefg’
00:0004: 65 66 67
2 ASCLIST OFF
3 00:0007: 61 62 63 64 DB ‘abcdefg’
4 00:000E: EA NOP
CONDLIST [LABEI] CONDLIST ON
[LABEI] CONDLIST OFF

This directive controls the printing of conditionals that are not executed. For example, if an | F statement is false, any lines
up to an EL SE or ENDIF or ENDC directive are not parsed by the assembler. If CONDLIST is ON, then these lines will
be printed to the listing file if listing is activated. If CONDLIST is OFF, then these lines are not printed. When the
conditional istrue, then the lines are always printed. The default is ON.

EXAMPLE:
1 IF 0
2 NOP
3 ELSE
400:0000: 60 RTS
5 ENDIF
6
7 CONDLIST  OFF
8 IF 0
10 ELSE
11 00:0001: 60 RTS
12 ENDIF

© The Western Design Center, Inc. 2005

80



TheWestern Design Center, Inc.

September 2005
MACLIST [LABEI]
MLIST [LABEI]
MNLIST [LABEI]

[LABEI]

MACLIST
MACLIST
MLIST
MNLIST

Assembler/Linker v3.49

ON
OFF

This directive controls the listing of expanded macros. When a macro is invoked, the invoking line is displayed, followed by
each line of the macro as it is parsed by the assembler. Each expanded macro line is precede by a “+' symbol. |If the macro
exitswithaMACEXIT directive, the remaining lines of the macro are not listed. The default is ON.

EXAMPLE:
1
2
3
4
5
6
7
8
9
+ 9
+ 9 00:0000: 00 00
+ 9
+ 9
+ 9
10
11 00:0002: 00 00 00 00
PASSL [LABEI]

[LABEI]

NULL MACRO

IF SIZE=2

DW 0

ELSE

DL 0

ENDIF

MACEND

NULL 2

IF 2=2

DW 0

ELSE

DL 0

ENDIF

MACLIST OFF

NULL 4
PASS1
PASS1

ON
OFF

This directive controls whether a listing is generated during Pass 1. This is useful for checking macros and tracking down

syntax errors. The default is OFF.

EXAMPLE:
1
2 XXXXXXXX
3 00:0000:
4 00000001
1
2 00000001
300:0000: 01
4 00000001

PASSL ON
BB EQU CC
DB BB
CC EQU 1
PASSL ON
BB EQU CC
DB BB
CC EQU 1

© The Western Design Center, Inc. 2005

81



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Appendix A Assembler Error Messages

Fatal Errors

Premature end of filein conditional.

After a conditional directive is encountered such as .IF, if the end of the file is
encountered before an end conditional is encountered it is considered a fatal
error.

M odules must start and end in original file!

A MODULE or ENDMOD directive has been encountered within an included file.

Unableto start new module without ENDM OD.

A new MODULE directive has been encountered before the old module was terminated
with an ENDMOD directive.

Need module name here.

A new MODULE directive has been detected without a name for the module immediately
following it.

M or e than one input file specified!

The assembler only assembles a single file at a time. If more than one input file
name is specified, this error is generated.

Mor e than one output hame.

Only one output or list file can be specified.

Out of memory!

The assembler was unable to allocate memory for an operation.

No input file specified!

The assembler needs an input Ffile name to be passed as an argument when the
assembler is invoked.

Can't open input file <FIL E>.

The assembler was unable to open the file, FILE, for reading.

Can't open output file <FIL E>.

The assembler was unable to open the output file, FILE, for writing.

© The Western Design Center, Inc. 2005 82



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Can't open listing file <FILE>.

The assembler was unable to open the listing file, FILE, for writing.

Too many -l options.

The assembler allows for at most 16 -1 include path options.

Includes nested too deep.

The assembler allows include Ffiles to be nested at most fifty deep.

Unabletoreopen 'FILE' after INCLUDE!

The assembler only opens one file at a time when handling include files. After it
finishes a file, it reopens the previous file and seeks to where it left off. If
the previous file can™t be opened, this error is generated.

I nput linelonger than 512 char acter sl

The assembler only allows input lines up to 512 characters in length.

Missing MACEND or ENDM in macro definition.

IT an end-of-Ffile is encountered during a macro definition before the macro
definition is terminated by a MACEND or ENDM directive, this error is generated.

M acr o nested mor e than 256 deep!

Macros may be nested at most 256 deep in the assembler.

M acr o ar guments too long!

Macro arguments may be up to 128 characters in length.

Reference to undefined macr o argument!

IT a reference is made to a macro argument that is not defined as an argument to
the macro, it is an error.

Expanded macro line longer than 512 character s!

After macro expansion, the resulting line may not be longer than 512 characters.

REPT linelonger than 512 characters!

A REPT directive may not expand to more than 512 characters.

Missing ENDREPT in REPT definition.

IT an end-of-File is encountered during a REPT definition before the REPT
definition is terminated by an ENDREPT directive, this error is generated.

© The Western Design Center, Inc. 2005 83



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Error writing to object file.

IT an error occurs while writing to the output file, this error is generated.

L abel value different between pass 1 and 2!

This is an internal error which is generated when a label value has a different
value on pass 2 than on passl. This is a safety check that nothing changes size
between pass 1 and pass 2.

Error writingto listing file.

This is generated if writing to the listing file returns an error.

Exceeded maximum of 256 sections!

The assembler supports a maximum of 256 different sections.

M ax of 500 nested sections exceeded!

The assembler allows nested section directives, but only up to 500.

I mbalancein nested sections.

IT an ENDS directive is encountered without a corresponding section directive, this
error 1Is generated.

Non-Fatal Errors

Need symbol hame her el

A symbol name must follow an IFDEF or IFNDEF directive.

Missing comma and second ar gument.

The IFDIFF, IFSAME, IFNDIFF and IFNSAME directives need two arguments separated by
a comma.

Conditional requires symbol name.

The IFEXT, IFABS, IFREL, IFPAGEO, IFNEXT, IFNABS, IFNREL, IFNPAGEO directives must
be followed by a symbol name.

Unknown symbol in conditional.

The IFEXT, IFABS, IFREL, IFPAGEO, IFNEXT, IFNABS, IFNREL, IFNPAGEO directives must
be followed by a defined symbol name.

This conditional only valid inside a macr o.

The IFMA and IFNMA directives are only valid within the body of a macro definition.

© The Western Design Center, Inc. 2005 84



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
Need start,sizefor INSERT!

The INSERT directive must be followed by the name of the file to insert, the
location to insert it and the size.

Couldn't open binary file'FILE'!

The INSERT directive was unable to open the file specified for insertion.

Symbol required.

The EXTERN, EXTERNAL, XREF, GLOBAL, PUBLIC, and XDEF directives must be followed by
at least one symbol and only by symbols.

L abel isrequired for directive.

The EQU, EQUAL, GEQU, DEFL, SET and VAR directives must be preceded by a label.

L abel typeredefined.

The DEFL, SET and VAR directives may not redefine a label previously defined.

Can't redefine type of labdl.

The EQU, EQUAL and GEQU directives may not redefine a lable previously defined.

Fully resolved expression required for EQU by Pass 2!

An EQU directive may contain forward references, but they must be resolved by the
end of the file.

Too many global equates.

The assembler only allows up to 1000 global equates.

Page length must be at least 10 lines!

Attempting to change the page length using the PL directive will not allow lines
less than ten lines.

Page width must be >= 40 and <= 132!

The PW directive may change the width of the output page to between 40 and 132
characters only.

Too many lines on top!

The TOP directive may not specify more lines than are on the output page.

© The Western Design Center, Inc. 2005 85



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Missing ter mination char acter 'X'!

The FCC directive uses the first character of it"s argument as the terminator and
looks for that character to terminate the argument.

Illegal outside of macro definition!

The ENDM and MACEND directives are only valid within the definition of a macro.

Illegal outside of rept definition!

The ENDREPT directive is only valid within the definition of a REPT.

Only valid delimitersare: {, (, and |.

The MACDELIM directive allows specifying the character used to delimit a macro
argument, but is limited to the characters “{", “(® and "[".

MACEXIT illegal outside of macr o definition!

The MACEXIT directive is only valid within the definition of a macro.

Conditional EL SEIF directive out of place.

The ELSEIF directive is only valid after a conditional directive.

Need conditional end directive here.

An end of condidional directive must be seen before the end-of-file iIs reached.

Conditional EL SE directive out of place.

The ELSE directive is only valid after a conditional directive.

Conditional end directive out of place.

An end of condition directive is only valid after a conditional directive.

Couldn't find section during pass2!

This error occurs if a section directive is parsed on pass 2 that wasn"t parsed on
pass 1.

Label isrequired for SECTION directive.

A label must be on the same line as a SECTION directive to name the section.

Illegal value for RADI X directivel

The RADIX directive only allows the values 1, 2, 8, b, d, h, o, g. Anything else is
illegal.

© The Western Design Center, Inc. 2005 86



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Need CHIP type her el

The CHIP directive must be followed by a symbol or number.

Invalid CHIP typel

The CHIP directive must be followed by one of '6502'", ''65c02', '"w65c02s', ''65816",
or ''65802". Anything else is invalid.

End marker for comment missing!

The COMMENT directive takes a character to be used as an end marker as its
argument. This error is generated if the character is missing.

End of file before end of comment!

This error is generated if the end-of-file is reached before the end of comment
marker from a COMMENT directive is detected.

Need character argument for directive!

The LLCHAR directive is used to change the special character used to denote
temporary labels. This error message is generated if the LLCHAR directive is give
without an argument.

Need quoted file namel

The FILE directive takes a file path surrounded by double quotes followed by a
comma and a line number. If the quotes are missing, it IS an error.

Need line number after file name arg.

The FILE directive takes a file path surrounded by double quotes followed by a
comma and a line number. IFf the comma and/or line number are missing, it is an
error.

Need local offset in ENDFUNC directive.

The ENDFUNC directive takes three arguments separated by commas. If the second
argument, the local offset, is missing, It iIs an error.

Need ar g offset in ENDFUNC dir ective.

The ENDFUNC directive takes three arguments separated by commas. If the third
argument, the argument offset, is missing, It is an error.

Symbol required.

The SYM, STAG and MEMBER directives require a symbol as the first argument to the
directive.

© The Western Design Center, Inc. 2005 87



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Symbol valuerequired in SYM/MEMBER dir ective!

Following the symbol name, in the SYM and MEMBER directives is the value of the
symbol .

Unimplemented assembler directive.

IT an opcode is not a valid opcode and not a directive, it is considered to be an
unimplemented directive.

Missing ar gqument.

A directive that takes an ON or OFF argument is missing the argument.

Bad argument.

A directive that takes an ON or OFF argument has something other than ON or OFF as
the argument.

Divide by zero!

While evaluating an expression, a divide or modulo by zero was detected.

Invalid operator in floating point evaluate - N.

While evaluating a floating point expression, an invalid operator such as shift was
detected.

Bank number out of range!

An address expression contains a bank number larger than 255.

Hex and symbol areidentical!

A hex number matches a symbol name. Use a leading zero to avoid this error.

String not ter minated!

While parsing the input, a string was detected that was not terminated by the
corresponding termination character.

Missing ter minating '.' on operator!

Operators that require a leading and trailing period such as .UGT., require both
the leading and the trailing period.

M acro name already defined!

A macro name may only be defined once. Attempting to define It twice is an error.

© The Western Design Center, Inc. 2005 88



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

M acr o name conflicts with opcode, dir ective or section!

A macro name may not be the same as an opcode, directive or section unless the
MACFIRST directive has been turned on.

Arguments must be valid names.

When a macro is defined, the arguments must be valid symbol names.

Different number of argumentsin macro call(N) and definition(N).

When a macro is invoked, the number of arguments in the call should match the
number of arguments in the definition.

Too many global equates.

The assembler only allows up to 1000 global equates.

Illegal index register!

Only "s®, *"x", and "y" are valid as index registers.

Missing char acter!

When an argument starts with a "(" or "[", there should be a matching ")" or "]".

Only index register indirect allowed!

Only the Y index register is allowed following a stack addressing mode.

Only Y index register allowed!

Only the Y index register is allowed following a close parenthesis.

Illegal addressing model

The addressing mode specified is not a legal addressing mode.

Can't useregister aslabel!

A register name may not be used as a label.

Need symbol after '.'!
Need trailing '."!
Only #.low. or #.high. allowed!

When using immediate addressing, a -low. or _high. may be used to select the byte
to be used. When a period follows the "#" character, it is assumed that a symbol
will follow followed by another period and that the symbol will be one of "low" or
Ilhighll-

© The Western Design Center, Inc. 2005 89



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

I nstruction not allowed with selected processor.
Addressing mode not allowed with selected processor.

Different processors support different sets of instructions and addressing modes.
The processor is selected with the CHIP directive. If an instruction not
implemented on the selected processor is used, this error is generated.

| mmediate value truncated!

When an immediate value is used in such a way that the value is changed when the
value is truncated, this error message is given.

Need label to branch to!

Branch instructions require a label to branch to.

Branch out of range!

Branches are limited to plus or minus 127 bytes. If a branch is attempted to a
label beyond this range, an error is generated.

Dot not allowed on opcode names.

A leading period is allowed on directive names, but is not allowed on instruction
opcodes.

Multiply defined symbol.

An attempt has been made to define a symbol that has already been defined.

Illegal character in directive.

A leading period must be followed by a directive otherwise It is an error.

Need opcode, directive or macro name here.

A statement must consist of either an opcode, directive or macro name.

Unknown opcode, directive, macro or section.

A statement has a symbol that is not defined.

Extra characterson linel

After the last argument, the remainder of the line should be empty except for
comments unless the SPACES directive has been used.

Section name alr eady defined!

An attempt has been made to define a section already defined.

© The Western Design Center, Inc. 2005 90



TheWestern Design Center, Inc.
September 2005 Assembler/Linker v3.49

Section name conflicts with opcode, dir ective or macr o!

A section name must be unique and not conflict with any opcode, directive or macro.

Undefined symbol - <SYM>.

A symbol has been referenced but not defined.

© The Western Design Center, Inc. 2005 91



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Appendix B Linker Error Messages

Error creating symbol filel

An error occurred while trying to create the symbol file.

Too many sour cefilesin modulel

The linker allows up to 5000 different source file names. More than that is an
error.

Unableto find tag serial number!

This is an internal error that occurs when dealing with structure tags.

Couldn't createerror file 'FILE'!

An error occurred while trying to create the error file.

Error creating symbol listing filel

An error occurred while trying to create the map file.

Linkio:Out of memory!

The linker output cache mechanism was unable to allocate enough memory.

Cannot create output file: ZLN.TM P!

The linker creates a temporary file when building the output. This error occurs if
the linker is unable to create that file.

Error whilelseeking output filel

An error occurred when seeking in the temporary output file.

Error writing output filel

An error occurred when the cache is written to the output file.

Error whilereading output filel

An error occurred when a cache block was read back from the output file.

Attempted to write outside of file bounds!

The linker pre-computes where everything in the output should end up, and if
something ends up outside the computed bounds of the output file it is an internal
error and should be reported.

© The Western Design Center, Inc. 2005 92



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

No input given!

When the arguments to the linker are parsed, if no input files have been specified,
that is considered an error.

Option syntax error!

When an argument is passed to the linker, if there are extra characters that are
part of the option, It is an error.

Cannot have nested -f options.

The -f argument allows options to be read from a text file. However, the option
files may not be nested.

Cannot open -f file: FILE!

The linker was unable to open the options file, FILE.

Illegal Nintendo map!

The Nintendo map option may be specified as -n, -n2, or -n8. Anything else is an
error.

Out of memory!

The linker is unable to allocate enough memory.

Couldn't open FILE in pass 2!

The linker was unable to open a module file in pass 2 that was opened during pass
1.

Unknown loader item (OxXX)!

An object module is corrupt and the linker has detected an unknown token.

Section 'SECT' hasdifferent typein module'FILE:MODULE"'!

The same section can be defined in different files. However, all definitions of the
same section should be defined with the same parameters, otherwise it is an error.

Overlap of NN bytesin section 'SECT' of 'FILE:MODULE!'!

The linker checks that sections located at fixed addresses don®"t overlap one
another.

Section SECT's ROM image exceeds bank $XX by $X X!

A single section may not exceed 64K unless the section spread option, -Z, has been
specified.

© The Western Design Center, Inc. 2005 93



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

Attempt to locate section "'SECT' morethan oncel

A section may be located at only a single fixed address.

Module'FILE:MODULE' too big to fit!

As each module®s data is added to a section, if there is not enough room left in
the bank, this error is generated.

Section 'SECT' overlaps section 'SECT' by NN bytes at address OxXX (ROM)
Section 'SECT' overlaps section 'SECT' by NN bytes at address OxX X (Relocatable)

Each section®s ROM and relocatable address and size is checked to see if it
overlaps another section and this message is generated if it does.

Can't mix 65xxx and 65032 object module types!

The object module format for 6502 and 65816 is different from the 65032.

Library format isinvalid!

IT a File is passed to the linker as a library and is not in the correct format, an
error 1Is generated.

Can't open FILE!

The specified file, FILE, didn"t exist or was locked and couldn"t be opened.

Couldn't read object file FIL E!

An error occurred when reading the specified file, FILE.

Not an object file FILE!

The object file is not in the correct format.

Undefined symbol: SYM

A symbol is referenced that has not been defined.

Branch out of range!

The linker can handle files assembled in a single pass and can resolve branch
relative instructions and generates an error if the branch is out of range.

© The Western Design Center, Inc. 2005 94



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49

THISPAGE LEFT INTENTIONALLY BLANK

© The Western Design Center, Inc. 2005 95



TheWestern Design Center, Inc.

September 2005

ABSOLUTE, 50

ABSOLUTE INDEXED WITH X, 51
ABSOLUTE INDEXED WITH Y, 51
ABSOLUTE INDIRECT, 52
ABSOLUTE LONG, 50
ABSOLUTE LONG INDEXED WITH X, 51
ACCUMULATOR, 50

ADD, 25

ADDRESSING MODE SYMBOLS, 22
APPEND, 30, 55

APWDC, 70

ARGCHK, 71

ASCII, 67

ASCLIST, 80

BIT7,65

BLKB, 69

BLKL, 69

BLKW, 69

BYTE, 68

CASE, 61

CHIP, 61

CHIP 65816, 20

CHIP 65C02, 20

CHIP W65C02, 50

CHKIMMED, 62

CODE, 14, 15, 20, 34, 35, 37, 39, 57
COMMENT, 62

COND, 74

CONDLIST, 80

DA, 67

DATA, 13, 14, 15, 16, 17, 20, 34, 36, 39, 40, 57, 58, 79
DATE, 67

DB, 68

DBREG, 23, 63

DBYTE, 68

DC, 68

DEFB, 68

DEFL, 58

DEFS, 70

DEFW, 68

DIRECT, 50

DIRECT INDEXED INDIRECT, 51
DIRECT INDEXED WITH X, 51
DIRECT INDEXED WITH Y, 51
DIRECT INDIRECT, 52

DIRECT INDIRECT INDEXED, 50
DIRECT INDIRECT LONG INDEXED, 51
DL, 69

DOUBLE, 70

DPAGE, 23, 63

INDEX

DS, 70
DSA, 70

DSB, 70

DSL, 70

DSW, 70

DW, 68
EFUNC, 61
EJECT, 79
ELSE, 74
END, 56
ENDC, 27, 74
ENDIF, 27, 74
ENDM, 25, 71
ENDMOD, 56
ENDR, 73
ENDS, 13, 57
EQU, 58
EQUAL, 58
EXIT, 56
EXTERN, 59
EXTERNAL, 59
EXTERNS, 59
FCB, 68

FCC, 67

FDB, 68
FLOAT, 70
GEQU, 58
GLOBAL, 19, 60
GLOBALS, 60
HEADING, 78
IF, 74

IFABS, 75
IFDEF, 75
IFDIFF, 75
IFEXT, 76
IFFALSE, 74
IFLONGA, 77
IFLONGI, 77
IFMA, 73
IFMATCH, 77
IFNABS, 75
|FNDEF, 75
IFNDIFF, 75
IFNEXT, 76
IFNFALSE, 74
IFNMA, 73
IFNPAGEQ, 76
IFNREL, 75
IFNSAME, 75
IFNTRUE, 74

Assembler/Linker v3.49

© The Western Design Center, Inc. 2005

96



TheWestern Design Center, Inc.

September 2005 Assembler/Linker v3.49
IFNZ, 74 NLIST, 79

IFPAGEDQ, 76 NOLIST, 79

IFREL, 75 ORG, 15, 18, 58

IFSAME, 75 ORIGIN, 58

IFSHORTA, 77 PAG, 79

IFSHORTI, 77 PAGE, 79

IFTRUE, 74 PAGEDQ, 14, 20, 57, 76

IFZ, 74 PASS], 81

IMMEDIATE, 50 PL, 77

IMPLIED, 50 PROGRAM COUNTER RELATIVE, 51
INCDEBUG, 30, 61 PROGRAM COUNTER RELATIVE LONG, 52
INCLIST, 80 PUBLIC, 19, 60

INCLUDE, 11, 30, 55 PW, 78

KDATA, 14, 15, 20, 34, 36, 37 RADIX, 64

LIST, 79 REF_ONLY, 57

LLCHAR, 19,65 REPT, 73

LONG, 69 RMB, 70

LONGA, 63 SECTION, 57

LONGI, 64 SET, 59

LONGW, 69 SPACES, 64

LWORD, 69 SQUOTE, 66

MACDELIM, 72 STRING, 68

MACEND, 25,71 STTL, 78

MACEXIT, 72 SUBTITLE, 78

MACFIRST, 72 SUBTTL, 79

MACLIST, 81 TITLE, 78

MACRO, 71 TOP, 78

MASK, 65 TTL, 78

MESSAGE, 60 TWOCHAR, 23, 66

MESSG, 60 UDATA, 14, 15, 17, 20, 34, 39, 57
MicroTek, 39 VAR, 59

MLIST, 81 WORD, 68

MNLIST, 81 XDEF, 19, 60

MODULE, 13, 56 XREF, 59

NAM, 78

© The Western Design Center, Inc. 2005 97



	SOFTWARE DEVELOPMENT SYSTEM
	CHAPTER 1 Introduction
	Assembler
	Linker
	Librarian
	Manual organization

	CHAPTER 2 Files
	Source files
	Macro files
	Object modules and libraries
	Output files

	CHAPTER 3 Program Structure
	Modules
	Sections
	Pre-defined sections
	Absolute versus Relative
	Section location
	Copying data
	Startup.ASM
	Nintendo development

	CHAPTER 4 Statement Syntax
	Comments
	Labels
	Operation
	Processor Instructions
	Assembler Directives
	Section Directives
	Macro Calls

	Operands
	Operators
	Unary Operators
	Binary Operators
	Comparison Operators
	Operator Precedence Table
	Numbers
	Addresses
	Immediate Operands
	Character Constants and Strings
	Program Counter
	Assembler Addressing Modes


	CHAPTER 5 Macros and Conditionals
	Macros
	Macro Definition
	Calling a Macro
	Redefining Assembler Directives and Opcodes
	Macro Labels

	Conditional assembly

	CHAPTER 6 WDCxxAS (ASSEMBLER)
	Running the Program
	Option Summary
	Option Descriptions

	CHAPTER 7 WDCLN (LINKER)
	Running the Program
	Option Summary
	Option Descriptions
	Quick Linking
	Technical Notes
	Considerations for when CODE section exceeds bank 00
	Notes on the starting address for each section in the linker output
	Notes on creating a new DATA section


	CHAPTER 8 WDCLIB (LIBRARIAN)
	Running the Program
	Option Summary
	Option Descriptions

	CHAPTER 9 WDCOBJ (EXAMINE OBJECT MODULES)
	Running the Program
	Option Summary
	Option Descriptions

	CHAPTER 10 WDCSYM (EXAMINE SYMBOL TABLES)
	Running the Program
	Option Summary
	Option Descriptions

	CHAPTER 11 Assembly Opcodes
	Standard Instructions
	Alternate Instructions
	W65C02S Instructions
	Addressing Modes

	CHAPTER 12 Assembly Directives
	File and Symbol Control
	Parsing Control
	Data Definition Control
	Macro Control
	Conditional Control
	Listing Control

	Appendix A  Assembler Error Messages
	Fatal Errors
	Premature end of file in conditional.
	Modules must start and end in original file!
	Unable to start new module without ENDMOD.
	Need module name here.
	More than one input file specified!
	More than one output name.
	Out of memory!
	No input file specified!
	Can't open input file <FILE>.
	Can't open output file <FILE>.
	Can't open listing file <FILE>.
	Too many -I options.
	Includes nested too deep.
	Unable to reopen 'FILE' after INCLUDE!
	Input line longer than 512 characters!
	Missing MACEND or ENDM in macro definition.
	Macro nested more than 256 deep!
	Macro arguments too long!
	Reference to undefined macro argument!
	Expanded macro line longer than 512 characters!
	REPT line longer than 512 characters!
	Missing ENDREPT in REPT definition.
	Error writing to object file.
	Label value different between pass 1 and 2!
	Error writing to listing file.
	Exceeded maximum of 256 sections!
	Max of 500 nested sections exceeded!
	Imbalance in nested sections.

	Non-Fatal Errors
	Need symbol name here!
	Missing comma and second argument.
	Conditional requires symbol name.
	Unknown symbol in conditional.
	This conditional only valid inside a macro.
	Need start,size for INSERT!
	Couldn't open binary file 'FILE'!
	Symbol required.
	Label is required for directive.
	Label type redefined.
	Can't redefine type of label.
	Fully resolved expression required for EQU by Pass 2!
	Too many global equates.
	Page length must be at least 10 lines!
	Page width must be >= 40 and <= 132!
	Too many lines on top!
	Missing termination character 'X'!
	Illegal outside of macro definition!
	Illegal outside of rept definition!
	Only valid delimiters are: {, (, and [.
	MACEXIT illegal outside of macro definition!
	Conditional ELSEIF directive out of place.
	Need conditional end directive here.
	Conditional ELSE directive out of place.
	Conditional end directive out of place.
	Couldn't find section during pass2!
	Label is required for SECTION directive.
	Illegal value for RADIX directive!
	Need CHIP type here!
	Invalid CHIP type!
	End marker for comment missing!
	End of file before end of comment!
	Need character argument for directive!
	Need quoted file name!
	Need line number after file name arg.
	Need local offset in ENDFUNC directive.
	Need arg offset in ENDFUNC directive.
	Symbol required.
	Symbol value required in SYM/MEMBER directive!
	Unimplemented assembler directive.
	Missing argument.
	Bad argument.
	Divide by zero!
	Invalid operator in floating point evaluate - N.
	Bank number out of range!
	Hex and symbol are identical!
	String not terminated!
	Missing terminating '.' on operator!
	Macro name already defined!
	Macro name conflicts with opcode, directive or section!
	Arguments must be valid names.
	Different number of arguments in macro call(N) and definition(N).
	Too many global equates.
	Illegal index register!
	Missing character!
	Only index register indirect allowed!
	Only Y index register allowed!
	Illegal addressing mode!
	Can't use register as label!
	Need symbol after '.'!
	Need trailing '.'!
	Only #.low. or #.high. allowed!
	Instruction not allowed with selected processor.
	Addressing mode not allowed with selected processor.
	Immediate value truncated!
	Need label to branch to!
	Branch out of range!
	Dot not allowed on opcode names.
	Multiply defined symbol.
	Illegal character in directive.
	Need opcode, directive or macro name here.
	Unknown opcode, directive, macro or section.
	Extra characters on line!
	Section name already defined!
	Section name conflicts with opcode, directive or macro!
	Undefined symbol - <SYM>.


	Appendix B  Linker Error Messages
	
	Error creating symbol file!
	Too many source files in module!
	Unable to find tag serial number!
	Couldn't create error file `FILE'!
	Error creating symbol listing file!
	Linkio:Out of memory!
	Cannot create output file: ZLN.TMP!
	Error while lseeking output file!
	Error writing output file!
	Error while reading output file!
	Attempted to write outside of file bounds!
	No input given!
	Option syntax error!
	Cannot have nested -f options.
	Cannot open -f file: FILE!
	Illegal Nintendo map!
	Out of memory!
	Couldn't open FILE in pass 2!
	Unknown loader item (0xXX)!
	Section 'SECT' has different type in module 'FILE:MODULE'!
	Overlap of NN bytes in section 'SECT' of 'FILE:MODULE'!
	Section SECT's ROM image exceeds bank $XX by $XX!
	Attempt to locate section `SECT' more than once!
	Module 'FILE:MODULE' too big to fit!
	Section 'SECT' overlaps section 'SECT' by NN bytes at address 0xXX (ROM)
	Section 'SECT' overlaps section 'SECT' by NN bytes at address 0xXX (Relocatable)
	Can't mix 65xxx and 65032 object module types!
	Library format is invalid!
	Can't open FILE!
	Couldn't read object file FILE!
	Not an object file FILE!
	Undefined symbol: SYM
	Branch out of range!


	INDEX

